Skip to main content
Log in

Investigation of Structural, Magnetic and Magnetotransport Properties of Electrodeposited Co–TiO2 Nanocomposite Films

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Nanocomposite Co–TiO2 thin films were prepared by simultaneous electrodeposition of Co and TiO2 on a Cu substrate from a solution based on Co sulfate in which TiO2 nanoparticles were suspended by stirring. We investigated the influence of the TiO2 nanoparticles concentration in the bath on the morphology, composition, magnetic and magnetotransport properties of the films. The Co–TiO2 thin films were characterized by using scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction analyses, and their magnetic properties were evaluated by using an induction type device with data acquisition system and a torque magnetometer. The current in-plane transport properties of the films have been investigated. The results showed that the films were composed of a Co metal matrix containing embedded TiO2 nanoparticles and cobalt hydroxide which is formed simultaneously with cobalt metal deposition. The amount of TiO2 in the film increases with the rising concentration of TiO2 nanoparticles in the plating bath. This complex structure favored the increase of the magnetoresistance. The Co–TiO2 nanocomposite films (containing about 1.3 at.% Ti) exhibit a giant magnetoresistance contribution of 47.6 %. From the magnetic measurements, we have found that the saturation magnetization, the magnetic susceptibility, and the effective magnetic anisotropy constant decrease with the increasing content of TiO2 in the thin layer. The easy magnetization axis direction changes from in-plane to almost perpendicular-to-plane, with increasing TiO2 nanoparticles content in the film. The existence of a giant magnetoresistance effect in Co–TiO2 is very promising for potential applications in spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Camargo, P.H.C., Satyanarayana, K.G., Wypych, F.: Mater. Res. 12, 1–39 (2009)

    Article  Google Scholar 

  2. Hovestad, A., Janssen, L.J.J.: J. Appl. Electrochem. 25, 519–527 (1995)

    Article  Google Scholar 

  3. Punnoose, A., Seehra, M.S., Park, W.K., Moodera, J.S.: J. Appl. Phys. 93, 7867–7869 (2003)

    Article  ADS  Google Scholar 

  4. Wang, X.W., Gao, X.P., Li, G.R., Gao, L., Yan, T.Y., Zhu, H.Y.: Appl. Phys. Lett. 91, 143102 (2007)

    Article  ADS  Google Scholar 

  5. Soo, Y.L., Kioseoglou, G., Kim, S., Kao, Y.H., Sujatha Devi, P., Parise, J., Gambino, R.J., Gouma, P.I.: Appl. Phys. Lett. 81, 655–657 (2002)

    Article  ADS  Google Scholar 

  6. Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., Koinuma, H.: Science 291, 854–856 (2001)

    Article  ADS  Google Scholar 

  7. Sanjabi, S., Shirani, A.: Mater. Corros. 62, 1–8 (2011)

    Google Scholar 

  8. Shirani, A., Momenzadeh, M., Sanjabi, S.: Surf. Coat. Technol. 206, 2870–2876 (2012)

    Article  Google Scholar 

  9. Rajiv, E.P., Seshadri, S.K.: J. Mater. Sci. 28, 1758–1764 (1993)

    Article  ADS  Google Scholar 

  10. Fa-min, L., Peng, D., Wei-mei, S., Tian-min, W.: Chin. J. Aeronaut. 20, 162–167 (2007)

    Article  Google Scholar 

  11. Stojak, J.L., Fransaer, J., Talbot, J.B.: Review of electrocodeposition. In: Alkire, R.C., Kolb, D.M. (eds.) Adv. Electrochem. Sci. Eng., pp. 193–223. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  12. Tjong, S.C., Chen, H.: Mater. Sci. Eng., R Rep. 45, 1–88 (2004)

    Article  Google Scholar 

  13. Ramalingam, S., Muralidharan, V.S., Subramania, A.: J. Solid State Electrochem. 13, 1777–1783 (2009)

    Article  Google Scholar 

  14. Fustes, J., Gomes, A., da Silva Pereira, M.I.: J. Solid State Electrochem. 12, 1435–1443 (2008)

    Article  Google Scholar 

  15. Gomes, A., da Silva Pereira, M.I., Mendonc, M.H., Costa, F.M.: J. Solid State Electrochem. 9, 190–196 (2005)

    Article  Google Scholar 

  16. Iticescu, C., Cârâc, G., Mitoşeriu, O., Lampkt, T.: Rev. Chim. 53, 43–47 (2008)

    Google Scholar 

  17. Lajevardi, S.A., Shahrabi, T.: Appl. Surf. Sci. 256, 6775–6781 (2010)

    Article  ADS  Google Scholar 

  18. Lajevardi, S.A., Shahrabi, T., Hasannaeimi, V.: Mater. Corros. 62, 29–34 (2011)

    Article  Google Scholar 

  19. Parida, G., Chaira, D., Chopkar, M., Basu, A.: Surf. Coat. Technol. (2011). doi:10.1016/j.surfcoat.2011.04.102

    Google Scholar 

  20. Vlasa, A., Varvara, S., Pop, A., Bulea, C., Muresan, L.M.: J. Appl. Electrochem. 40, 1519–1527 (2010)

    Article  Google Scholar 

  21. Guglielmi, N.: J. Electrochem. Soc. 119, 1009–1012 (1972)

    Article  Google Scholar 

  22. Cullity, B.D., Stock, R.S.: Elements of X-ray Diffraction, 3rd edn. Prentice Hall, New York (2001)

    Google Scholar 

  23. Ishikawa, K., Yoshikawa, K., Okada, N.: Phys. Rev. B 37, 5852–5856 (1988)

    Article  ADS  Google Scholar 

  24. Moulder, J.F., et al.: Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics, Eden Prairie (1995)

    Google Scholar 

  25. Jeong, B.S., Heo, Y.W., Norton, D.P., Kelly, J.G., Rairigh, R., Hebard, A.F., Budai, J.D., Park, Y.D.: Appl. Phys. Lett. 84, 2608–2610 (2004)

    Article  ADS  Google Scholar 

  26. Yang, J., Liu, H., Martens, W.N., Frost, R.L.: J. Phys. Chem. C 114, 111–119 (2010)

    Article  Google Scholar 

  27. Matsushima, J.T., Trivinho-Strixino, F., Pereira, E.C.: Electrochim. Acta 51, 1960–1966 (2006)

    Article  Google Scholar 

  28. Lafouresse, M., Medvedev, A., Kutuso, K., Schwarzacher, W., Masliy, A.: Russ. J. Electrochem. 43, 856–858 (2007)

    Article  Google Scholar 

  29. Lai, X., Guo, Q., Min, B.K., et al.: Surf. Sci. 487, 1–8 (2001)

    Article  ADS  Google Scholar 

  30. Muilenberg, G.E.: Handbook of X-ray Photoelectron Spectroscopy. Perkin–Elmer, Eden Prairie (1979)

    Google Scholar 

  31. Rao, C.N.R., Sarma, D.D., Vasudevan, S., Hegde, M.S.: Proc. R. Soc. Lond. A 367, 239–252 (1979)

    Article  ADS  Google Scholar 

  32. Sanjinés, R., Tang, H., Berger, H., Gozzo, F., Margaritondo, G., Lévy, F.: J. Appl. Phys. 75, 2945–2951 (1994)

    Article  ADS  Google Scholar 

  33. Meiklejohn, W.H.: J. Appl. Phys. Suppl. 33, 1328–1335 (1962)

    Article  ADS  Google Scholar 

  34. Berkowitz, A.E., Takano, K.: J. Magn. Magn. Mater. 200, 552–570 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the European Social Fund in Romania, under the responsibility of the Managing Authority for the Sectoral Operational Programme for Human Resources Development 2007–2013 [grant POSDRU/88/1.5/S/47646]. The authors would like to acknowledge Professor Ioan Sandu and Dr. Valentin Nica from the “Alexandru Ioan Cuza” University, for their support in SEM and XRD experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Georgescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poiană, M., Dobromir, M., Sandu, A.V. et al. Investigation of Structural, Magnetic and Magnetotransport Properties of Electrodeposited Co–TiO2 Nanocomposite Films. J Supercond Nov Magn 25, 2377–2387 (2012). https://doi.org/10.1007/s10948-012-1612-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1612-3

Keywords

Navigation