Skip to main content
Log in

Electrodeposited Zn–TiO2 nanocomposite coatings and their corrosion behavior

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The present paper aims to investigate the electrodeposition on steel substrate and the corrosion behavior of Zn–TiO2 nanocomposite coatings. Zn–TiO2 composite coatings were electrodeposited on OL 37 steel from an electrolyte containing ZnCl2, KCl, HBO3 (pH 5.7) brightening agents and dispersed nanosized TiO2. Corrosion measurements were performed in 0.2 g L−1 (NH4)2SO4 solution (pH 3) by using electrochemical methods (open-circuit potential measurements, polarization curves, electrochemical impedance spectroscopy). The results of electrochemical measurements were corroborated with those obtained by using non-electrochemical methods (X-ray diffraction, atomic force microscopy and scanning electron microscopy). The results indicate that the composite coatings exhibit higher corrosion resistance as compared to pure Zn coatings and a non-linear dependence of their polarization resistance on TiO2 concentration in the plating bath was found. The importance of TiO2 nature and concentration regarding the properties of the composite coatings was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kondo K, Ohgishi A, Tanaka Z (2000) J Electrochem Soc 147:2611

    Article  CAS  Google Scholar 

  2. Low CTJ, Wills RGA, Walsh FC (2006) Surf Coat Technol 201:371

    Article  CAS  Google Scholar 

  3. Tuaweri TJ, Wilcox GD (2006) Surf Coat Technol 200:5921

    Article  CAS  Google Scholar 

  4. Gomes A, Da Silva Pereira MI, Mendonça MH, Costa FM (2005) J Solid State Electrochem 9:190

    Article  CAS  Google Scholar 

  5. Praveen BM, Venkatesha TV (2008) Appl Surf Sci 254:2418

    Article  CAS  Google Scholar 

  6. Deguchi T, Imai K, Matsui H, Iwasaki M, Tada H, Ito S (2001) J Mater Sci 36:4723

    Article  CAS  Google Scholar 

  7. Mukherjee D, Palaniswamy N, Guruviah S, Belthowska E, Barbara P (1990) Bull Electrochem 6:380

    CAS  Google Scholar 

  8. Satoshi O, Hiroaki N, Shigeo K, Tetsuya A, Hisaaki F, Kazuo O (2002) J Surf Finish Soc Japan 53:920

    Google Scholar 

  9. Mokshanatha PB, Venkatarangaiah VT, Arthoba NY, Kalappa P (2007) Metal-Org Nano-Metal Chem 37:461

    Google Scholar 

  10. Muresan L, Gherman M, Zamblau I, Varvara S, Bulea C (2007) Stud Univ Babes-Bolyai Chem LII:97

    Google Scholar 

  11. Guglielmi N (1972) J Electrochem Soc 119:1009

    Article  CAS  Google Scholar 

  12. Abdel Hamid Z (2001) Anticorros Methods Mater 48:235

    Article  CAS  Google Scholar 

  13. Fustes J, Gomes A, Da Silva Pereira MI (2008) J Solid State Electrochem 12:1435

    Article  CAS  Google Scholar 

  14. Stern M, Geary AL (1957) J Electrochem Soc 104:56

    Article  CAS  Google Scholar 

  15. Mukherjee D, Venkataraman B, Palaniswamy N, Natesan M, Balakrishnan K (1987) Key Eng Mater 20–28:3689

    Google Scholar 

  16. Shibli SMA, Dilimon VS, Smith PA, Manu R (2006) Surface Coat Technol 200:4791

    Article  CAS  Google Scholar 

  17. Vlasa A, Pop AV, Varvara S, Chira M, Bulea C, Muresan L (2009) Optoelectron Adv M Rapid Communications 3:1290

    Google Scholar 

  18. Celis JP, Roos JR (1983) Oberfl-Surf 24:352

    CAS  Google Scholar 

  19. Li J, Sun Y, Sun X, Qiao J (2005) Surf Coat Technol 192:331

    Article  CAS  Google Scholar 

  20. Juettner K, Lorenz WJ, Kendig MW, Mansfeld F (1988) J Electrochem Soc 135:332

    Article  CAS  Google Scholar 

  21. Dermaj A, Hajjaji N, Joiret S, Rahmouni K, Srhiri A, Takenouti H, Vivier V (2007) Electrochim Acta 52:4654

    Article  CAS  Google Scholar 

  22. Muresan L, Varvara S, Stupnisek-Lisac E, Otmacic H, Marusic K, Horvat-Kurbegovic S, Robbiola L, Rahmouni K, Takenouti H (2007) Electrochim Acta 52:7770

    Article  CAS  Google Scholar 

  23. Magainoa S, Soga M, Sobue K, Kawaguchi A, Ishida N, Imai H (1999) Electrochim Acta 44:4307

    Article  Google Scholar 

  24. Chung SC, Sung SL, Hsien CC, Shih HC (2000) J Appl Electrochem 30:607

    Article  CAS  Google Scholar 

  25. Cachet C, Ganne F, Maurin G, Petitjean J, Vivier V, Wiart R (2001) Electrochim Acta 47:509

    Article  CAS  Google Scholar 

  26. Barranco V, Feliu S Jr, Feliu S (2004) Corros Sci 46:2203

    Article  CAS  Google Scholar 

  27. Santana Rodriguez JJ, Motesdeoca Alvarez C, Gonzalez Gonzalez JE (2006) Mater Corros 57:350

    Article  CAS  Google Scholar 

  28. Lozano-Morales A, Podlaha EJ (2004) J Electrochem Soc 151:C478

    Article  CAS  Google Scholar 

  29. Fontenay F, Andersen LB, Moller P (2001) Galvanotechnik 92:928

    CAS  Google Scholar 

  30. Maurin G, Lavanant A (1995) J Appl Electrochem 25:113

    Article  Google Scholar 

  31. Hovestad A, Jansen LJJ (1995) J Appl Electrochem 25:519

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support within the project PN II INOVARE No. 97/28.09.2007 (NANOTECH) is gratefully acknowledged. The authors thank Mr. Florin Popa, from UTCN Cluj-Napoca, for the SEM-EDX analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liana Maria Muresan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlasa, A., Varvara, S., Pop, A. et al. Electrodeposited Zn–TiO2 nanocomposite coatings and their corrosion behavior. J Appl Electrochem 40, 1519–1527 (2010). https://doi.org/10.1007/s10800-010-0130-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0130-x

Keywords

Navigation