Skip to main content
Log in

Isolation, Characterization and Antifungal Activity of Proteinase Inhibitors from Capsicum chinense Jacq. Seeds

  • Published:
The Protein Journal Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Capsicum species belong to the Solanaceae family and have great social, economic and agronomical significance. The present research presents data on the isolation and characterization of Capsicum chinense Jacq. peptides which were scrutinized in relation to their toxicity towards a diverse set of yeast species. The protein extract was separated with C18 reverse-phase chromatography in high performance liquid chromatography, resulting in three different peptide enriched fractions (PEFs) termed PEF1, PEF2 and PEF3. Tricine-SDS-PAGE of the PEF2 revealed peptides with molecular masses of approximately 5.0 and 8.5 kDa. These PEFs also exhibited strong antifungal activity against different yeasts. In the presence of the PEF2, Candida tropicalis exhibited morphological changes, including cellular agglomeration and formation of pseudohyphae. Determined N-terminal sequences of PEF2 and PEF3 were proven to be highly homologous to serine proteinase inhibitors, when analysed by comparative database sequence tools. For this reason were performed protease inhibitory activity assay. The PEFs displayed high inhibitory activity against trypsin and low inhibitory activity against chymotrypsin. PEF2 and PEF3 were considerably unsusceptible to a broad interval of pH and temperatures. Due to the myriad of application of Proteinase inhibitors (PIs) in fields ranging from plant protection against pathogens and pests to medicine such as in cancer and virus replication inhibition, the discovery of new PIs with new properties are of great interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PEFs:

Peptide enriched fractions

AMPs:

Antimicrobial peptides

References

  1. Araújo APU, Hansen D, Vieira DF, De Oliveira C, Santana LA, Beltramini LM, Sampaio CA, Sampaio UM, Oliva MLV (2005) Biol Chem 386:561–568

    Article  Google Scholar 

  2. Azarkan M, Dibiani R, Goormaghtigh E, Raussens V, Baeyens-Volant D (2006) Biochim Biophys Acta 1764:1063–1072

    Article  CAS  Google Scholar 

  3. Babu BS, Pandravada SR, Rao RDVJ, Anitha K, Chakrabarty SK, Varaprasad KS (2011) Crop Prot 30:389–400

    Article  Google Scholar 

  4. Barta E, Pintar A, Pongor S (2002) Trends Genet 18:600–603

    Article  CAS  Google Scholar 

  5. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  6. Broekaert WF, Terras FRG, Cammue BPA, Vanderleyden J (1990) FEMS Microbiol Lett 69:55–60

    Article  CAS  Google Scholar 

  7. Broze GJ, Girard TJ, Novotny WF (1990) Biochemistry 29:7539–7546

    Article  CAS  Google Scholar 

  8. Castro MS, Fontes W (2005) Protein Pept Lett 12:11–16

    Article  Google Scholar 

  9. Costa LV, Lopes MTG, Lopes R, Alves SEM (2008) Acta Amazo 38:361–364

    Article  Google Scholar 

  10. Diz MS, Carvalho AO, Ribeiro SFF, Da Cunha M, Beltraminic L, Rodrigues R, Nascimento VV, Machado OLT, Gomes VM (2011) Physiol Plant 142:233–246

    Article  CAS  Google Scholar 

  11. Diz MSS, Carvalho AO, Rodrigues R, Neves-Ferreira AGC, Da Cunha M, Alves EW, Okorokova AL, Oliveira MA, Perales J, Machado OLT, Gomes VM (2006) Biochim Biophys Acta 1760:1323–1332

    Article  CAS  Google Scholar 

  12. Egorov AT, Odintsova IT, Pukhalsky AV, Grishin EV (2005) Peptides 26:2064–2073

    Article  CAS  Google Scholar 

  13. Garcia-Olmedo F, Salcedo G, Sanchez-Monge R, Gomez L, Royo J, Carbonero P (1987) Oxf Surv Plant Mol Cell Biol 4:275–334

    CAS  Google Scholar 

  14. Gomori G (1955) Methods Enzymol 1:138–146

    Article  CAS  Google Scholar 

  15. Hibbetts K, Hines B, Williams D (1999) J Vet Inter Med 13:302–308

    Article  CAS  Google Scholar 

  16. Jones JB, Stall RE, Bouzar H (1998) Annu Rev Phytopathol 36:41–58

    Article  CAS  Google Scholar 

  17. Kim JY, Park SC, Kim MH, Lim HT, Park Y, Hahm KS (2005) Biochem Biophys Res Commun 330:921–927

    Article  CAS  Google Scholar 

  18. Koiwa H, Bressan RA, Hasegawa PM (1997) Trends Plant Sci 2:379–384

    Article  Google Scholar 

  19. Lopes JLS, Valadares NF, Moraes DI, Rosa JC, Araújo HSS, Beltramini LM (2009) Phytochemistry 70:871–879

    Article  CAS  Google Scholar 

  20. Macedo MLR, Garcia VA, Freire MGM, Richardson M (2007) Phytochemistry 68:1104–1111

    Article  CAS  Google Scholar 

  21. Morrison SC, Savage GP, Morton JD, Russell AC (2007) Food Chem 100:1–7

    Article  CAS  Google Scholar 

  22. Mosolov VV, Valueva TA (2005) Appl Microbiol Biot 41:227–246

    Article  CAS  Google Scholar 

  23. Page MJ, Di Cera E (2008) Cell Mol Life Sci 65:1220–1236

    Article  CAS  Google Scholar 

  24. Pereira RCA, Crisostomo JR (2011) Hortic Bras 29:S6009–S6015

    Article  Google Scholar 

  25. Rausher M (2001) Nature 411:857–864

    Article  CAS  Google Scholar 

  26. Reyes-Escogido ML, Gonzalez-Mondragon EG, Vazquez-Tzompantzi E (2011) Molecules 16:1253–1270

    Article  CAS  Google Scholar 

  27. Ribeiro CS, Lopes CA, Carvalho SIC, Henz GP, Reifschneider FJB (2008) Embrapa Hortaliças 11–14

  28. Ribeiro SFF, Carvalho AO, Da Cunha M, Rodrigues R, Cruz LP, Melo VMM, Vasconcelos IM, Melo EJT, Gomes VM (2007) Toxicon 50:600–611

    Article  CAS  Google Scholar 

  29. Ristaino JB, Stephen AJ (1999) Plant Dis 83:1080–1089

    Article  Google Scholar 

  30. Riva EM, Rodrigues R, Pereira MG, Sudré CP, Karasawa M, Amaral JR (2004) Crop Breed Appl Biotechnol 4:490–494

    Google Scholar 

  31. Rodríguez-Burruezo A, Gonzalez-Mas MC, Nuez F (2010) J Food Sci 75:S446–S453

    Article  Google Scholar 

  32. Schägger H, Von Jagow G (1987) Anal Biochem 166:368–379

    Article  Google Scholar 

  33. Shee C, Islam A, Ahmad F, Sharm AK (2007) Int J Biol Macromol 41:410–414

    Article  CAS  Google Scholar 

  34. Simonne AH, Simonne EH, Eitenmiller RR, Mills HA, Green NR (1997) J Food Compos Anal 10:299–311

    Article  CAS  Google Scholar 

  35. Terras FR, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Van Leuven F, Vanderleyden J et al (1995) Plant Cell 7(5):573–588

    CAS  Google Scholar 

  36. Torres-Castillo JA, Jacobo CM, Blanco-Labra A (2009) Phytochemistry 79:1374–1381

    Article  Google Scholar 

  37. Wang S, Rao P (2010) Eur Food Res Technol 231:331–338

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of the Brazilian agencies CNPq, FAPERJ and CAPES. We are also thankful for the financial support to Dr. Suzanna F. F. Ribeiro at the Universidade Estadual do Norte Fluminense through a fellowship to CAPES/TOXINOLOGY (1212/2011). We are grateful to G.A. Moraes, B.F. Ribeiro, M.A.S.C. Dutra and L.C.D. Souza for general laboratory technical support. This study forms part of the D.Sc. degree thesis of GBD carried out at the Universidade Estadual do Norte Fluminense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maura Da Cunha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, G.B., Gomes, V.M., Pereira, U.Z. et al. Isolation, Characterization and Antifungal Activity of Proteinase Inhibitors from Capsicum chinense Jacq. Seeds. Protein J 32, 15–26 (2013). https://doi.org/10.1007/s10930-012-9456-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-012-9456-z

Keywords

Navigation