Skip to main content
Log in

A PCA approach to population analysis: with application to a Phase II depression trial

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

For psychiatric diseases, established mechanistic models are lacking and alternative empirical mathematical structures are usually explored by a trial-and-error procedure. To address this problem, one of the most promising approaches is an automated model-free technique that extracts the model structure directly from the statistical properties of the data. In this paper, a linear-in-parameter modelling approach is developed based on principal component analysis (PCA). The model complexity, i.e. the number of components entering the PCA-based model, is selected by either cross-validation or Mallows’ Cp criterion. This new approach has been validated on both simulated and clinical data taken from a Phase II depression trial. Simulated datasets are generated through three parametric models: Weibull, Inverse Bateman and Weibull-and-Linear. In particular, concerning simulated datasets, it is found that the PCA approach compares very favourably with some of the popular parametric models used for analyzing data collected during psychiatric trials. Furthermore, the proposed method performs well on the experimental data. This approach can be useful whenever a mechanistic modelling procedure cannot be pursued. Moreover, it could support subsequent semi-mechanistic model building.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mould DR, Denman NG, Duffull S (2007) Using disease progression models as a tool to detect drug effect. Clin Pharmacol Ther 82:81–86. doi:10.1038/sj.clpt.6100228

    Article  PubMed  CAS  Google Scholar 

  2. Shang EY, Gibbs MA, Landen JW, Krams M, Russell T, Denman NG, Mould DR (2009) Evaluation of structural models to describe the effect of placebo upon the time course of major depressive disorder. J Pharmacokinet Pharmacodyn 36:63–80. doi:10.1007/s10928-009-9110-3

    Article  PubMed  Google Scholar 

  3. Gomeni R, Merlo-Pich E (2006) Bayesian modelling and ROC analysis to predict placebo responders using clinical score measured in the initial weeks of treatment in depression trials. Br J Clin Pharmacol 63:595–613. doi:10.1111/j.1365-2125.2006.02815.x

    Article  Google Scholar 

  4. Nucci G, Gomeni R, Poggesi I (2009) Model-based approaches to increase efficiency of drug development in schizophrenia: a can’t miss opportunity. Expert Opin Drug Discov 4:837–856. doi:10.1517/17460440903036073

    Article  PubMed  CAS  Google Scholar 

  5. Santen G, Danhof M, Della Pasqua O (2008) Evaluation of treatment response in depression studies using a Bayesian parametric cure rate model. J Psychiatr Res 42:1189–1197. doi:10.1016/j.jpsychires.2007.11.009

    Article  PubMed  Google Scholar 

  6. Holford N, Li J, Benincosa L, Birath M (2002) Population disease progress models for the time course of HAMD score in depressed patients receiving placebo in anti-depressant clinical trials. In: Population Approach Group in Europe (PAGE) 11th Meeting, Abstract 311. http://www.page-meeting.org/?abstract=311. Accessed 23 Jan 2012

  7. Reddy VP, Kozielska M, Johnson M, Vermeulen A, de Greef R, Liu J, Groothuis GMM, Danhof M, Proost JH (2011) Structural models describing placebo treatment effects in schizophrenia and other neuropsychiatric disorders. Clin Pharmacokinet 50:429–450. doi:10.2165/11590590-000000000-00000

    Article  Google Scholar 

  8. Karlsson M, Holford N (2008) A tutorial on visual predictive checks. In: Population Approach Group in Europe (PAGE) 17th Meeting, Abstract 1434. http://www.page-meeting.org/default.asp?abstract=1434. Accessed 14 Mar 2012

  9. Jolliffe IT (2002) Principal component analysis. Springer, New York

    Google Scholar 

  10. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909. doi:10.1038/ng1847

    Article  PubMed  CAS  Google Scholar 

  11. Price AL, Zaitlen NA, Reich D, Patterson N (2010) New approaches to population stratification in genome-wide association studies. Nat Rev Genet 11:459–463. doi:10.1038/nrg2813

    Article  PubMed  CAS  Google Scholar 

  12. Raychaudhuri S, Stuart JM, Altman RB (2000) Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput 5:452–463. doi:10.1.1.21.3169

    Google Scholar 

  13. De la Torre, Black MJ (2001) Robust principal component analysis for computer vision. International Conferences on Computer Vision, IEEE. Vancouver

  14. Ghosh-Dastidar S, Adeli H (2008) Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans Biomed Eng 55:512–518. doi:10.1109/TBME.2007.905490

    Article  PubMed  Google Scholar 

  15. Abdi H, Williams LJ (2010) Principal component analysis. WIREs Comput Stat. doi:10.1002/wics.101

  16. Santen G, van Zwet E, Danhof M, Della Pasqua O (2008) Heterogeneity in patient response in depression: the relevance of functional data analysis. In: To fail or not to fail: clinical trials in depression. Doctoral thesis, Leiden University, pp 111–126

  17. El Yazaji M, Battas O, Agoub M, Moussaoui D, Gutknecht C, Dalery J, d’Amato T, Saoud M (2002) Validity of the depressive dimension extracted from principal component analysis of the PANSS in drug-free patients with schizophrenia. Schizophr Res 56:121–127. doi:10.1016/S0920-9964(01)00247-X

    Article  PubMed  Google Scholar 

  18. Rowland M, Sheiner LB, Steimer JL (1985) Variability in drug therapy: description, estimation and control. Raven Press, New York

    Google Scholar 

  19. Hamilton M (1960) A rating scale for depression. J Neurol Neurosur Psychiat 23:56-62. doi:10.1136/jnnp.23.1.56

    Google Scholar 

  20. Gomeni R, Lavergne A, Merlo-Pich E (2009) Modeling placebo response in depression trials using a longitudinal model with informative dropout. Eur J Pharm Sci 36:4–10. doi:10.1016/j.bbr.2011.03.031

    Article  PubMed  CAS  Google Scholar 

  21. Berry MW (1992) Large scale sparse singular value computations. Int J Supercomput Appl 6:13–49. doi:10.1.1.37.8591

    Google Scholar 

  22. Russu A, Poggesi I, Gomeni R, De Nicolao G (2011) Bayesian population modeling of Phase I dose escalation studies: Gaussian process versus parametric approaches. IEEE Trans Biomed Eng 58:3156–3164. doi:10.1109/TBME.2011.2164614

    Article  PubMed  Google Scholar 

  23. Jackson JE (1991) A user’s guide to principal components. Wiley, New York

    Book  Google Scholar 

  24. Peres-Neto PR, Jackson DA, Somers KM (2005) How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput Stat Data Anal 49:974–997. doi:10.1016/j.csda.2004.06.015

    Article  Google Scholar 

  25. Cattell RB (1966) The scree test for the number of factors. Multivar Behav Res 1:245–276. doi:10.1207/s15327906mbr0102_10

    Article  Google Scholar 

  26. Mallows CL (1973) Some comments on Cp. Technometrics 15:661–675. doi:10.2307/1267380

    Google Scholar 

  27. Mallows CL (1995) More comments on Cp. Technometrics 37:362–372. doi:10.2307/1269729

    Google Scholar 

  28. Soderstrom T, Stoica P (1989) System identification. Prentice-Hall International, Hemel Hempstead

    Google Scholar 

  29. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

  30. Molenberghs G, Thijs H, Jansen I, Beunckens C (2004) Analyzing incomplete longitudinal clinical trial data. Biostatistics 5:445–464. doi:10.1093/biostatistics/kxh001

    Article  PubMed  Google Scholar 

  31. Hu C, Sale ME (2003) A joint model for nonlinear longitudinal with informative dropout. J Pharmacokinet Pharmacodyn 30:83–103. doi:10.1023/A:1023249510224

    Article  PubMed  Google Scholar 

  32. Harville DA (1977) Maximum likelihood approaches to variance component estimation and to related problems. J Am Stat Assoc 72:320–338. doi:10.2307/2286796

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Marostica.

Appendix

Appendix

How to obtain the covariance matrix of the unobservable response

The following preposition shows that the SVD of the covariance matrix \( \Sigma_{Y}\) provides also the principal vectors of the covariance matrix \(\Sigma_{X}\) of the unobservable true response \( X_i, i = 1, \ldots, M.\)

Proposition

Let U X  = U Y and D X  = D Y  − σ 2 I. Then, the SVD of \( \Sigma_X \) is \( \Sigma_X = U_X D_X U_X^T\).

Proof

In view of (16),

$$ \begin{aligned} U_X \Sigma_X U_X^T &= U_Y (\Sigma_Y - \sigma^2 {\bf I}) U_Y^T \\ &= D_Y - \sigma^2 U_Y U_Y^T \\ &= D_Y - \sigma^2 {\bf I} = D_X \end{aligned} $$
(27)

Hyperparameter estimation

If the variance matrix \( \Sigma_{\overline{X}} \) of the fixed effect parameters \( \overline{X} \) were finite, the marginal likelihood would be given by

$$ p({\bf Y}|\varvec{\lambda}) = N(0, \varvec{\overline{\Phi}} \Upsigma_{\overline{X}} {\varvec{\overline{\Phi}}}^T + {\varvec{\widetilde{\Phi}}} \Omega {\varvec{\widetilde{\Phi}}}^T + \sigma^2 {\bf I}) $$
(28)

Hence, the ML estimate \( \varvec{\lambda}^{ML} \) would be

$$ \varvec{\lambda}^{ML} = \arg \max_{\varvec{\lambda}} p({\bf Y}|\varvec{\lambda}) $$
(29)

In order to obtain the ML estimate of \( \varvec{\lambda}\), the fixed effect parameter vector \( \overline{X} \) must be integrated out of the joint density \( p({\bf Y},\overline{X})\). Indeed,

$$ p({\bf Y}|\varvec{\lambda}) = \int p({\bf Y}|\overline{X}, \varvec{\lambda}) p(\overline{X}|\varvec{\lambda}) d\overline{X} $$
(30)

where \( p(\overline{X}|\varvec{\lambda}) \) is the prior density for the fixed-effect vector \( \overline{X}\).

In the proposed model, an improper prior for \( \overline{X} \) is assumed, that is \( \Sigma_{ \overline{X}} \) is infinite. Fortunately, the improper, flat nature of \( p(\overline{X}|\varvec{\lambda}) \) does not hinder the closed-form calculation of a function \( G(\varvec{\lambda}) \) proportional to the marginal likelihood:

$$ p({\bf Y}|\varvec{\lambda}) \propto G(\varvec{\lambda}) = \int{p({\bf Y} | \overline{X}, \varvec{\lambda})} d\overline{X} $$
(31)

By rearranging the integral (31) as explained in [22], the result is

$$ G(\varvec{\lambda}) = \int{p({\bf Y} | \overline{X}, \varvec{\lambda}) d\overline{X}} = \frac{\sqrt{(2\pi)^r|\widetilde{\Upsigma}|}}{\sqrt{(2\pi)^n |\Upsigma|}}e^{-\frac{1}{2} \gamma^T \gamma} $$
(32)

where \( \Sigma = {\varvec{\widetilde{\Phi}}} {\varvec{\Omega}} {\varvec{\widetilde{\Phi}}}^T + \sigma^2 {\bf I}_{Mn}, \overline{\Sigma} = ({\varvec{\overline{\Phi}}}^T \Sigma^{-1} {\varvec{\overline{\Phi}}})^{-1} \) and \( \gamma^T \gamma = {\bf Y}^T \Sigma^{-1} {\bf Y} - {\bf Y}^T \Sigma^{-1} \varvec{\overline{\Phi}} \widetilde{\Sigma} \varvec{\overline{\Phi}}^T \Sigma^{-1} {\bf Y}\).

Hence, the ML estimation problem is reformulated as

$$ \varvec{\lambda}^{ML} = \arg \max_{\varvec{\lambda}} G(\varvec{\lambda}) $$
(33)

Estimation of fixed and random effects

Once the hyperparameter vector has been estimated, as specified in the previous subsection, then the fixed and random effects, \( \overline{X} \) and \( \varvec{\eta}\), are easily estimated applying the standard conditional posterior formula for the model (21):

$$ \begin{aligned} \hat{\varvec{\beta}} =& [\hat{\overline{X}}^T \quad \hat{\varvec{\eta}}^T]^T \\ =& (\varvec{\Phi}^T \varvec{\Phi} + \sigma^2 \Upsigma_{\varvec{\beta}}^{-1})^{-1} \varvec{\Phi}^T {\bf Y} \\ =& (\varvec{\Phi}^T \varvec{\Phi} + \sigma^2 \varvec{\Uplambda})^{-1} \varvec{\Phi}^T {\bf Y} \end{aligned} $$
(34)
$$ \varvec{\Uplambda} = \left( \begin{array}{cc} 0 & 0 \\ 0 & \varvec{\Omega}^{-1} \end{array}\right) $$
$$ Var[\varvec{\beta}|{\bf Y}, \varvec{\lambda}^{ML}] = \sigma^2 (\varvec{\Phi}^T \varvec{\Phi} + \sigma^2 \varvec{\Uplambda})^{-1} $$
(35)

Connection with Restricted Maximum Likelihood approach

In this work, parameters are estimated according to an established approach. As shown by Harville [32] in a frequentist framework, the same point estimates of λ, \(\overline{X}\) and η would be obtained by resorting to Restricted Maximum Likelihood estimation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marostica, E., Russu, A., Gomeni, R. et al. A PCA approach to population analysis: with application to a Phase II depression trial. J Pharmacokinet Pharmacodyn 40, 213–227 (2013). https://doi.org/10.1007/s10928-013-9304-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-013-9304-6

Keywords

Navigation