Skip to main content
Log in

Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/Organomodified Montmorillonite Nanocomposites for Potential Food Packaging Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) is a versatile, biobased and biodegradable copolymer from the family of polyhydroxyalkanoates. This study aims to further ameliorate its properties in order to enhance its applicability for food packaging purposes through preparation of organomodified montmorillonite clay (OMMT) nanocomposites. Nanocomposites based on pure PHBHHx as well as commercial PHBHHx granulate, after a previous dry-mixing with OMMT in concentrations of 1, 3, 5 and 10 wt%, were prepared using melt blending and compression molding. Investigation of the samples showed well dispersed nanofiller and highly intercalated nanocomposites, resulting in a continuous decrease in gas permeability, lowering O2, CO2 and water vapor permeability with about 5–7 % and approximately 40 % at OMMT concentration of 1 and 10 wt%, respectively. Besides gas permeability, other properties were affected as well. Thermal stability of the samples increased gradually up to 5 wt% nanofiller, but was reduced at 10 wt%. In order to investigate the effects of OMMT and molecular weights on PHBHHx crystallization, nanocomposites were also produced by solvent-casting and compared to those obtained by melt-blending. Crystallization was retarded, because of severe lowering of molecular weight due to processing-induced chain scission, catalyzed by OMMT moisture. However, this reduction was counteracted for a large part by using commercial PHBHHx granulate, which has shown better crystallization properties. The samples were rendered increasingly more brittle, displaying higher Young’s modulus and severely reduced elongation at break. From this study it appeared that, upon viewing all affected properties as a whole, the sample based on commercial PHBHHx and containing 3 wt% OMMT shows most promise for possible applications, however further research must be performed in order to exploit their fullest potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Amass W, Amass A, Tighe B (1998) Polym Int 47:89–144

    Article  CAS  Google Scholar 

  2. Poirier Y, Nawrath C, Somerville C (1995) Nat Biotech 13:142–150

    Article  CAS  Google Scholar 

  3. Jacquel N, Tajima K, Nakamura N, Miyagawa T, Pan P, Inoue Y (2009) J Appl Polym Sci 114:1287–1294

    Article  CAS  Google Scholar 

  4. Liu WJ, Yang HL, Wang Z, Dong LS, Liu JJ (2002) J Appl Polym Sci 86:2145–2152

    Article  CAS  Google Scholar 

  5. Qian J, Zhu L, Zhang J, Whitehouse RS (2007) J Polym Sci, Part B: Polym Phys 45:1564–1577

    Article  CAS  Google Scholar 

  6. Doi Y, Kitamura S, Abe H (1995) Macromolecules 28:4822–4828

    Article  CAS  Google Scholar 

  7. Lu X, Zhang J, Wu Q, Chen G-Q (2003) FEMS Microbiol Lett 221:97–101

    Article  CAS  Google Scholar 

  8. Noda I, Lindsey SB, Caraway D (2010) In: Chen GG-Q (ed) Plastics from bacteria. Springer, Berlin

    Google Scholar 

  9. Arvanitoyannis IS (1999) J Macromol Sci C 39:205–271

    Article  Google Scholar 

  10. Siracusa V (2012) Int J Polym Sci 2012:11

    Article  Google Scholar 

  11. Lagaron JM, Catalá R, Gavara R (2004) Mater Sci Tech 20:1–7

    Article  CAS  Google Scholar 

  12. Vandewijngaarden J, Murariu M, Dubois P, Carleer R, Yperman J, Adriaensens P, Schreurs S, Lepot N, Peeters R, Buntinx M (2014) J Polym Environ 22:501–507

    Article  CAS  Google Scholar 

  13. Alexandre M, Dubois P (2000) Mater Sci Eng, R 28:1–63

    Article  Google Scholar 

  14. Bordes P, Pollet E, Avérous L (2009) Prog Polym Sci 34:125–155

    Article  CAS  Google Scholar 

  15. Pavlidou S, Papaspyrides CD (2008) Prog Polym Sci 33:1119–1198

    Article  CAS  Google Scholar 

  16. Sinha Ray S, Okamoto M (2003) Prog Polym Sci 28:1539–1641

    Article  Google Scholar 

  17. Fukushima Y, Inagaki S (1987) J Inclusion Phenom 5:473–482

    Article  CAS  Google Scholar 

  18. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1185–1189

    Article  CAS  Google Scholar 

  19. Choudalakis G, Gotsis AD (2009) Eur Pol J 45:967–984

    Article  CAS  Google Scholar 

  20. Corrêa MCS, Branciforti MC, Pollet E, Agnelli JAM, Nascente PAP, Avérous L (2012) J Polym Environ 20:283–290

    Article  Google Scholar 

  21. Crétois R, Follain N, Dargent E, Soulestin J, Bourbigot S, Marais S, Lebrun L (2014) J Membrane Sci 467:56–66

    Article  Google Scholar 

  22. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2007) J Plast Film Sheet 23:133–148

    Article  CAS  Google Scholar 

  23. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) J Appl Polym Sci 108:2787–2801

    Article  CAS  Google Scholar 

  24. Sanchez-Garcia MD, Lagaron JM (2010) J Appl Polym Sci 118:188–199

    Article  CAS  Google Scholar 

  25. Zhang X, Lin G, Abou-Hussein R, Allen WM, Noda I, Mark JE (2008) J Macromol Sci Part A 45:431–439

    Article  CAS  Google Scholar 

  26. Zhang X, Lin G, Abou-Hussein R, Hassan MK, Noda I, Mark JE (2007) Eur Pol J 43:3128–3135

    Article  CAS  Google Scholar 

  27. Ding C, Cheng B, Wu Q (2011) J Therm Anal Calorim 103:1001–1006

    Article  CAS  Google Scholar 

  28. Bronlund JE, Redding GP, Robertson TR (2013) Packag Technol Sci 27:193–201

    Article  Google Scholar 

  29. Cagnon T, Guillaume C, Guillard V, Gontard N (2013) Packag Technol Sci 26:137–148

    Article  CAS  Google Scholar 

  30. Kuorwel KK, Cran MJ, Sonneveld K, Miltz J, Bigger SW (2013) Packag Technol Sci 27:149–159

    Article  Google Scholar 

  31. Bordes P, Hablot E, Pollet E, Avérous L (2009) Polym Degrad Stab 94:789–796

    Article  CAS  Google Scholar 

  32. Erceg M, Kovačić T, Klarić I (2009) Thermochim Acta 485:26–32

    Article  CAS  Google Scholar 

  33. Hablot E, Bordes P, Pollet E, Avérous L (2008) Polym Degrad Stab 93:413–421

    Article  CAS  Google Scholar 

  34. Cai Y, Hu Y, Xiao J, Song L, Fan W, Deng H, Gong X, Chen Z (2007) Polym Plast Technol Eng 46:541–548

    Article  CAS  Google Scholar 

  35. Xie W, Gao Z, Pan W-P, Hunter D, Singh A, Vaia R (2001) Chem Mater 13:2979–2990

    Article  CAS  Google Scholar 

  36. Davis RD, Gilman JW, VanderHart DL (2003) Polym Degrad Stab 79:111–121

    Article  CAS  Google Scholar 

  37. Daly PA, Bruce DA, Melik DH, Harrison GM (2005) J Appl Polym Sci 98:66–74

    Article  CAS  Google Scholar 

  38. Ariffin H, Nishida H, Shirai Y, Hassan MA (2008) Polym Degrad Stab 93:1433–1439

    Article  CAS  Google Scholar 

  39. Morikawa H, Marchessault RH (1981) Can J Chem 59:2306–2313

    Article  CAS  Google Scholar 

  40. Vogel C, Morita S, Sato H, Noda I, Ozaki Y, Siesler HW (2007) Appl Spectrosc 61:755–764

    Article  CAS  Google Scholar 

  41. Carli LN, Crespo JS, Mauler RS (2011) Compos Part A 42:1601–1608

    Article  Google Scholar 

  42. Ojijo V, Ray SS (2014) Prog Mater Sci 62:1–57

    Article  CAS  Google Scholar 

  43. Unnikrishnan L, Mohanty S, Nayak SK, Ali A (2011) Mater Sci Eng, A 528:3943–3951

    Article  Google Scholar 

  44. Yu F, Pan P, Nakamura N, Inoue Y (2011) Macromol Mater Eng 296:103–112

    Article  CAS  Google Scholar 

  45. Pan P, Liang Z, Nakamura N, Miyagawa T, Inoue Y (2009) Macromol Biosci 9:585–595

    Article  CAS  Google Scholar 

  46. Pan P, Shan G, Bao Y, Weng Z (2013) J Appl Polym Sci 129:1374–1382

    Article  CAS  Google Scholar 

  47. D’Amico DA, Cyras VP, Manfredi LB (2014) Thermochim Acta 594:80–88

    Article  Google Scholar 

  48. Yu W, Lan C-H, Wang S-J, Fang P-F, Sun Y-M (2010) Polymer 51:2403–2409

    Article  CAS  Google Scholar 

  49. Bussiere PO, Therias S, Gardette J-L, Murariu M, Dubois P, Baba M (2012) Phys Chem Chem Phys 14:12301–12308

    Article  CAS  Google Scholar 

  50. Mandelkern L (2012) Crystallization of polymers. Cambridge University Press, New York

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank J. Put, G. Reggers and D. Adons for their help with respectively gel permeation chromatography, differential scanning calorimetry and gas permeability measurements. Gratitude also goes out to M. Jans for preparing the TEM samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieke Buntinx.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandewijngaarden, J., Wauters, R., Murariu, M. et al. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/Organomodified Montmorillonite Nanocomposites for Potential Food Packaging Applications. J Polym Environ 24, 104–118 (2016). https://doi.org/10.1007/s10924-016-0751-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0751-1

Keywords

Navigation