Skip to main content
Log in

Mixed-Type Galerkin Variational Principle and Numerical Simulation for a Generalized Nonlocal Elastic Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A mixed-type Galerkin variational principle is proposed for a generalized nonlocal elastic model. The solvability and regularity of its solution is naturally derived through the Lax–Milgram lemma, from which a solvability criterion is inferred for a Fredholm integral equation of the first kind. A mixed-type finite element procedure is therefore developed and the existence and uniqueness of the discrete solution is proved. This compensates the lack of solvability proof for the collocation-finite difference scheme proposed in Du et al. (J Comput Phys 297:72–83, 2015). Numerical error bounds for the unknown and the intermediate variable are proved. By carefully exploring the structure of the coefficient matrices of the numerical method, we develop a fast conjugate gradient algorithm , which reduces the computations to \(\mathcal {O}(NlogN)\) per iteration and the memory to \(\mathcal {O}(N)\). The use of the preconditioner significantly reduces the number of iterations. Numerical results show the utility of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.F.: Sobolev Spaces. Elsevier, Singapore (2009)

    MATH  Google Scholar 

  2. Askari, E., Bobaru, F., Lehoucq, R.B., Parks, M.L., Silling, S.A., Weckner, O.: Peridynamics for multiscale materials modeling. J. Phys. Conf. Ser. 125, 012078 (2008)

    Article  Google Scholar 

  3. Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  4. Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1998)

    MATH  Google Scholar 

  5. Carreras, B.A., Lynch, V.E., Zaslavsky, G.M.: Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence models. Phys. Plasmas 8(12), 5096–5103 (2001)

    Article  Google Scholar 

  6. Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  7. Chen, H.Z., Wang, H.: Numerical simulation for conservative fractional diffusion equation by an expanded mixed formulation. J. Comput. Appl. Math. 296, 480–498 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  9. Davis, P.J.: Circulant Matrices. Wiley, New York (1979)

    MATH  Google Scholar 

  10. Deng, W.H., Hesthaven, J.S.: Discontinuous Galerkin methods for fractional diffusion equations. ESAIM M2AN. Math. Model. Numer. Anal. 47(6), 1845–1864 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Du, N., Wang, H., Wang, C.: A fast method for a generalized nonlocal elastic model. J. Comput. Phys. 297, 72–83 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  13. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gray, R.M.: Toeplitz and circulant matrices: a review. Found. Trends Commun. Inf. Theory 2(3), 155–239 (2006)

    Article  MATH  Google Scholar 

  15. Gunzburger, M., Lehoucq, R.B.: A nonlocal vector calculus with application to nonlocal boundary value problems. Multiscale Model. Simul. 8, 1581–1598 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jin, B.T., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84, 2665–2700 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lei, S.L., Sun, H.W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York (1972)

    Book  MATH  Google Scholar 

  19. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  20. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2-nd order elliptic problem. Lecture Notes in Mathematics 606, 292–315 (1997)

    Article  Google Scholar 

  21. Royden, H.L., Fitzpatrick, P.M.: Real Analysis. China Machine Press, Beijing (1988)

  22. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids. 48, 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Silling, S.A., Lehoucq, R.B.: Convergence of peridynamics to classical elasticity theory. J. Elasticity 93, 13–37 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Silling, S.A., Lehoucq, R.B.: Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73–168 (2010)

    Article  Google Scholar 

  25. Taloni, A., Chechkin, A., Klafter, J.: Generalized elastic model yields a fractional Langevin equation description. Phys. Rev. Lett. 104, 160602 (2010)

    Article  Google Scholar 

  26. Wang, K.X., Wang, H.: A fast characteristic finite difference method for fractional advection-diffusion equations. Elsevier Adv. Water. Resour. 34, 810–816 (2011)

    Article  Google Scholar 

  27. Zaslavsky, G.M., Stevens, D., Weitzner, H.: Self-similar transport in incomplete chaos. Phys. Rev. E 48(3), 1683–1694 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the OSD/ARO MURI Grant W911NF-15-1-0562, by the National Natural Science Foundation of China under Grants 10971254, 11301311, 11471196, 91130010, 11471194, 11571115, and 11171193, and by the National Science Foundation under Grants DMS-1216923 and DMS-1620194. The authors would like to express their sincere thanks to the referees for their very helpful comments and suggestions, which greatly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanzhen Chen.

Appendix

Appendix

In this appendix, we introduce the definitions and notations of those spaces and the properties of the fractional operators used in this paper. They also can be found in [1, 7, 10, 13, 18, 19] and the references cited therein.

Definition 9.1

(Negative fractional derivative spaces [7, 10]) Let \(\mu >0\). Define the norm

$$\begin{aligned} \begin{array}{lll} \Vert v\Vert _{J_L^{-\mu }(\mathbb {R})}:=\left\| _{-\infty }I_x^\mu v\right\| _{L^2(\mathbb {R})}, \end{array} \end{aligned}$$
(9.1)

and let \(J_L^{-\mu }(\mathbb {R})\) denote the closure of \(C_0^\infty (\mathbb {R})\) with respect to \(\Vert \cdot \Vert _{J_L^{-\mu }(\mathbb {R})}\). Analogously, define the norm

$$\begin{aligned} \begin{array}{lll} \Vert v\Vert _{J_R^{-\mu }(\mathbb {R})}:=\left\| _xI_{\infty }^\mu v\right\| _{L^2(\mathbb {R})}, \end{array} \end{aligned}$$
(9.2)

and let \(J_R^{-\mu }(\mathbb {R})\) denote the closure of \(C_0^\infty (\mathbb {R})\) with respect to \(\Vert \cdot \Vert _{J_R^{-\mu }(\mathbb {R})}\).

By the Fourier transforms

$$\begin{aligned} \begin{array}{lll} \mathscr {F}(v)(w)=\int _{-\infty }^\infty e^{-iwx}v(x)dx=\hat{v}(w), \end{array} \end{aligned}$$

the negative fractional order Sobolev space \(H^{-\mu }(\mathbb {R})\) is defined to be

Definition 9.2

(Negative Sobolev spaces [1, 18]) Let \(\mu >0\). Define the norm

$$\begin{aligned} \Vert v\Vert _{H^{-\mu }(\mathbb {R})}:=\Vert |w|^{-\mu }\hat{v}(w)\Vert _{L^2(\mathbb {R})}, \end{aligned}$$
(9.3)

and let \(H^{-\mu }(\mathbb {R})\) denote the closure of \(C_0^\infty (\mathbb {R})\) with respect to \(\Vert \cdot \Vert _{H^{-\mu }(\mathbb {R})}\).

The following equivalences are proved [10].

Lemma 9.1

([10], Theorem 2.5) The three spaces \(J_L^{-\mu }(\mathbb {R})\), \(J_R^{-\mu }(\mathbb {R})\) and \(H^{-\mu }(\mathbb {R})\) are equal with equivalent norms, and

$$\begin{aligned} \left( _{-\infty } I_x^\mu v,{_x I_\infty ^\mu } v\right) =cos(\mu \pi )\Vert v\Vert ^2_{H^{-\mu }(\mathbb {R})}. \end{aligned}$$
(9.4)

For convenience, we need to restrict the negative fractional derivative spaces to a bounded subinterval of \(\mathbb {R}\), which, in this paper, is denoted by (0, 1). Still, we establish their equivalence with \(H^{-\mu }(0,1)\).

Definition 9.3

(Negative fractional derivative spaces in bounded domain [7]) Define the spaces \(J^{-\mu }_{L}(0,1),J^{-\mu }_{R}(0,1)\) as the closure of \(C_0^{\infty }(0,1)\) under their respective norms.

A similar conclusion with Lemma 9.1 can be derived for the bounded domain (0, 1).

Lemma 9.2

([7], Theorem 2.6) Assume that \(\mu >0.\) Then, the three spaces \(J_L^{-\mu }(0,1)\), \(J_R^{-\mu }(0,1)\) and \(H^{-\mu }(0,1)\) are equal with equivalent norms, and

$$\begin{aligned} \begin{array}{lll} \left( _0I_x^\mu v,{_xI_1^\mu } v\right) =cos(\mu \pi ) \Vert v\Vert ^2_{H^{-\mu }(0,1)}, \end{array} \end{aligned}$$
(9.5)

We then define the fractional derivative spaces introduced in [13].

Definition 9.4

(Fractional derivative spaces [13]) Let \(\mu >0\). Define the semi-norm

$$\begin{aligned} |u|_{J^\mu _L (\mathbb {R})}:=\Vert _{-\infty }D_x^\mu u\Vert _{L^2(\mathbb {R})}, \end{aligned}$$

and norm

$$\begin{aligned} \Vert u\Vert _{J^\mu _L(\mathbb {R})}:=\left( \Vert u\Vert ^2_{L^2(\mathbb {R})}+|u|^2_{J^\mu _L(\mathbb {R})}\right) ^{\frac{1}{2}}, \end{aligned}$$
(9.6)

and let \(J^\mu _L(\mathbb {R})\) denote the closure of \(C_0^{\infty }(\mathbb {R})\) with respect to \(\Vert \cdot \Vert _{J^\mu _L(\mathbb {R})}\).

Analogously, we define the right fractional derivative space as follows. Let \(\mu >0\). Define the semi-norm

$$\begin{aligned} |u|_{J^\mu _R (\mathbb {R})}:=\Vert _xD_{+\infty }^\mu u\Vert _{L^2(\mathbb {R})}, \end{aligned}$$

and norm

$$\begin{aligned} \Vert u\Vert _{J^\mu _R(\mathbb {R})}:=\left( \Vert u\Vert ^2_{L^2(\mathbb {R})}+|u|^2_{J^\mu _R(\mathbb {R})}\right) ^{\frac{1}{2}}, \end{aligned}$$
(9.7)

and let \(J^\mu _R(\mathbb {R})\) denote the closure of \(C_0^{\infty }(\mathbb {R})\) with respect to \(\Vert \cdot \Vert _{J^\mu _R(\mathbb {R})}\).

We also define the norm for functions in \(H^\mu (\mathbb {R})\) in terms of the Fourier transforms.

Definition 9.5

(Fractional Sobolev spaces [1, 13, 18]) Let \(\mu >0\). Define the semi-norm

$$\begin{aligned} |u|_{H^\mu (\mathbb {R})}:=\Vert |w|^\mu \hat{u}\Vert _{L^2(\mathbb {R})}, \end{aligned}$$

and norm

$$\begin{aligned} \Vert u\Vert _{H^\mu (\mathbb {R})}:=\left( \Vert u\Vert ^2_{L^2(\mathbb {R})}+|u|^2_{H^\mu (\mathbb {R})}\right) ^{1/2}, \end{aligned}$$
(9.8)

and let \(H^\mu (\mathbb {R})\) denotes the closure of \(C_0^\infty (\mathbb {R})\) with respect to \(\Vert \cdot \Vert _{H^\mu (\mathbb {R})}\).

As stated in [13], the product of the left and the right fractional order derivative for the same real valued function u can be related to \(|\cdot |_{J_L^\mu (\mathbb {R})}\).

Lemma 9.3

([13], Lemma 2.4) Assume that \(\mu >0\). Then for u(x) a real valued function

$$\begin{aligned} \left( _{-\infty }D_x^\mu u,{_xD_{+\infty }^\mu } u\right) =cos( \mu \pi )\Vert _{-\infty }D_x^{\mu }u\Vert ^2_{L^2(\mathbb {R})}. \end{aligned}$$
(9.9)

At last, several good conclusions of the fractional operators will be demonstrated using the following lemmas.

Lemma 9.4

(Semigroup property for fractional integrate operator [19]) Let \(\mu ,\nu >0.\) For any \(u \in L^2(0,1),\) we have

$$\begin{aligned} _0I_x^{\mu +\nu }u={_0I_x^\mu }{_0I_x^\nu }u. \end{aligned}$$
(9.10)

Lemma 9.5

(Adjoint property for fractional integrate operator [19]) Let \(\mu >0.\) For any \(u,v \in L^2(0,1),\) we have

$$\begin{aligned} (_0I_x^\mu u,v)=(u, {_xI_1^\mu }v). \end{aligned}$$
(9.11)

Lemma 9.6

(Semigroup property for fractional derivative operator [13]) Let \(0<s<\mu .\) For any \(u \in J^\mu _{L,0}(0,1)\), we have

$$\begin{aligned} _{0}D_x^\mu u={_0D_x^s}{_0D_x^{\mu -s}}u, \end{aligned}$$
(9.12)

and similarly for any \(u\in J^\mu _{R,0}(0,1)\), we have

$$\begin{aligned} _xD_{1}^\mu u={_xD_{1}^s}{_xD_{1}^{\mu -s}}u. \end{aligned}$$
(9.13)

Lemma 9.7

(Adjoint property for fractional derivative operator [13]) Let \(1<\beta <2\). For any \(\omega \in H^\beta _0(0,1),v \in H_0^{\frac{\beta }{2}}(0,1)\), we have

$$\begin{aligned} \left( _0D_x^\beta \omega ,v\right) _{(0,1)}=\left( _0D_x^{\frac{\beta }{2}}\omega ,{_xD_1^{\frac{\beta }{2}}} v\right) _{(0,1)}, \end{aligned}$$
(9.14)
$$\begin{aligned} \left( _xD_1^\beta \omega ,v\right) _{(0,1)}=\left( _xD_1^{\frac{\beta }{2}}\omega ,{_0D_x^{\frac{\beta }{2}}} v\right) _{(0,1)}. \end{aligned}$$
(9.15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, L., Chen, H. & Wang, H. Mixed-Type Galerkin Variational Principle and Numerical Simulation for a Generalized Nonlocal Elastic Model. J Sci Comput 71, 660–681 (2017). https://doi.org/10.1007/s10915-016-0316-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0316-4

Keywords

Mathematics Subject Classification

Navigation