Skip to main content
Log in

High-Order Accurate Local Schemes for Fractional Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

High-order methods inspired by the multi-step Adams methods are proposed for systems of fractional differential equations. The schemes are based on an expansion in a weighted \(L^2\) space. To obtain the schemes this expansion is terminated after \(P+1\) terms. We study the local truncation error and its behavior with respect to the step-size h and P. Building on this analysis, we develop an error indicator based on the Milne device. Methods with fixed and variable step-size are tested numerically on a number of problems, including problems with known solutions, and a fractional version on the Van der Pol equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Barkai, E.: Fractional Fokker–Planck equation, solution, and application. Phys. Rev. E 63, 046118 (2001)

    Article  Google Scholar 

  2. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, 161–208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for two dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Deng, W.H.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ervin, V.J., Roop, J.P.: Variational formulation for the statinary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Xu, Q., Hesthaven, J.S.: Stable multi-domain spectral penalty methods for fractional partial differential equations. J. Comput. Phys. 257, 241–258 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deng, W.H., Hesthaven, J.S.: Local discontinuous Galerkin methods for fractional diffusion equations. ESAIM Math. Model. Numer. Anal. 47, 1845–1864 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, Y., Sun, Z., Liao, H.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 256, 195–210 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lubich, C.: Convolution quadrature and discretized operational calculus I. Numer. Math. 52, 129–145 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brunner, H., van der Houwen, P.J.: The Numerical Solution of Volterra Equations. Elsevier Science Publishers B.V., Amsterdam (1986)

  12. Brunner, H., Schötazau, D.: \(hp\) discontinuous Galerkin time-stepping for Volterra integrodifferential equations. SIAM J. Numer. Anal. 44(1), 224–245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mustapha, K., Brunner, H., Mustapha, H., Schötazau, D.: An \(hp\)-version discontinuous Galerkin method for integro-differential equations of parabolic type. SIAM J. Numer. Anal. 49(4), 1369–1396 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations, 2nd edn. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  15. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  16. Süli, E., Mayers, D.F.: An Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  17. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, 10th printing, National Bureau of Standards, Washington (1972)

  18. Bernardi, C., Maday, Y.: Spectral Methods, Handbook of Numerical Analysis, vol. V, Techniques of Scientific Computing (Part 2). Elsavier Science, Amsterdam (1997)

    Google Scholar 

  19. Bernardi, C., Maday, Y.: Polynomial approximation of some singular functions. Appl. Anal. 42, 1–32 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the NSF DMS-1115416 and by OSD/AFOSRFA9550-09-1-0613.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Baffet.

Appendices

Appendix 1: Polynomial Approximation

1.1 Jacobi Polynomials

In this section we suppose \(\alpha >-1\). Let \(P_n^{(\alpha ,0)}\) be the Jacobi polynomial of degree n corresponding the weight \(w_{\alpha }\left( \xi \right) =(1-\xi )^{\alpha }\), normalized such that \(\Vert P_n^{(\alpha ,0)} \Vert _{\alpha }^2=1\), where

$$\begin{aligned} \Vert f\Vert _{\alpha }^2=\int _{-1}^1 |f|^2\, {w_{\alpha }}. \end{aligned}$$
(9.1)

Let \(I=\left( -1,1\right) \),

$$\begin{aligned} \left\langle f,g \right\rangle _{\alpha }=\int _{-1}^1 fg\, {w_{\alpha }}, \end{aligned}$$
(9.2)

for \(f:I\rightarrow \mathbb {R}\), \(g:I\rightarrow \mathbb {R}^d\), and \(L^2_{\alpha }(I,\mathbb {R}^d)\) the space of measurable functions \(f:I\rightarrow \mathbb {R}^d\) such that \(\Vert f\Vert _{\alpha }<\infty \). The following can be found in [17], for example. The Jacobi polynomials \(P_n^{(\alpha ,0)}\) are given by Rodrigues’ formula

$$\begin{aligned} P_n^{(\alpha ,0)}\left( \xi \right) =\frac{\sqrt{2n+\alpha +1}}{2^{(\alpha +1)/2}}\ \frac{(-1)^n}{2^n n!}\, w_{\alpha }^{-1}\, \frac{\mathrm {d}^n}{\mathrm {d}\xi ^n}\Big (\left( 1-\xi ^2\right) ^n w_{\alpha }\left( \xi \right) \Big ), \end{aligned}$$
(9.3)

and are the eigenfunctions of the Sturm–Liouville problem

$$\begin{aligned} A\, v=\nu _n v \end{aligned}$$
(9.4)

where

$$\begin{aligned} A\, v=-w_{\alpha }^{-1}\Big (\left( 1-\xi ^2\right) w_{\alpha } v'\Big )' \qquad \qquad \nu _n=n\left( n+\alpha +1\right) . \end{aligned}$$
(9.5)

The operator \(A:D\left( A\right) \rightarrow L^2_{\alpha }\left( I,\mathbb {R}\right) \) is self adjoint. Let \(f\in L^2_{\alpha }(I,\mathbb {R}^d)\), and

$$\begin{aligned} f_n=\left\langle P_n^{(\alpha ,0)},f \right\rangle _{\alpha }. \end{aligned}$$
(9.6)

It can be shown that

$$\begin{aligned} f=\sum _{n=0}^\infty f_n P_n^{(\alpha ,0)} \end{aligned}$$
(9.7)

in the \(L^2_{\alpha }(I,\mathbb {R}^d)\) norm. Equivalently, there holds

$$\begin{aligned} \lim _{N\rightarrow \infty }\Vert f-\pi _N f\Vert _{\alpha }=0, \end{aligned}$$
(9.8)

where \(\pi _N\) is given by

$$\begin{aligned} \pi _N f=\sum _{n=0}^N f_n P_n^{(\alpha ,0)}. \end{aligned}$$
(9.9)

Parseval’s identity holds:

$$\begin{aligned} \Vert f\Vert _{\alpha }^2=\sum _{n=0}^\infty |f_n|^2. \end{aligned}$$
(9.10)

1.2 Approximation of \(D\left( A^{\sigma /2}\right) \) Functions

In this section some results regarding polynomial approximation of functions in \(L^2_{\alpha }(I,\mathbb {R}^d)\) are presented. In particular, the results of this section concern the approximation of functions which have singularities at the interval’s boundaries. For such a function f the approach taken here provides improved estimates compared to the estimates obtained by finding \(\sigma \) such that \(f\in H_{\alpha }^\sigma \). This approach can also be found in [18, 19].

For \(0<r\in \mathbb {R}\), define

$$\begin{aligned} A^{r}f=\sum _{n=1}^\infty \nu _n^{r} f_n P_n^{(\alpha ,0)}. \end{aligned}$$
(9.11)

The domain \(D\left( A^{r}\right) \) of \(A^{r}\) is the space of functions \(f\in L^2_{\alpha }(I,\mathbb {R}^d)\), such that

$$\begin{aligned} \Vert A^{r} f\Vert _{\alpha }^2=\sum _{n=1}^\infty \nu _n^{2r} |f_n|^2 <\infty . \end{aligned}$$
(9.12)

Lemma 1

Suppose \(0<\sigma \in \mathbb {R}\), and \(f\in D\left( A^{\sigma /2}\right) \). Then,

$$\begin{aligned} \Vert \left( 1-\pi _N\right) f\Vert _{\alpha }\le (N+1)^{-\sigma }\Vert A^{\sigma /2} f\Vert _{\alpha } \qquad \qquad N\ge 0. \end{aligned}$$
(9.13)

Proof

Suppose \(f\in D\left( A^{\sigma /2}\right) \), and \(N\ge 0\). Then

$$\begin{aligned} \Vert \left( 1-\pi _N\right) f\Vert _{\alpha }^2 =\sum _{n=N+1}^\infty |f_n|^2. \end{aligned}$$
(9.14)

Owing to

$$\begin{aligned} 1=\nu _n^{-\sigma }\nu _n^{\sigma }\le (N+1)^{-2\sigma }\nu _n^{\sigma } \qquad \qquad n\ge N+1, \end{aligned}$$
(9.15)

we get

$$\begin{aligned} \Vert \left( 1-\pi _N\right) f\Vert _{\alpha }^2\le & {} (N+1)^{-2\sigma } \sum _{n=N+1}^\infty \nu _n^{\sigma }|f_n|^2 \nonumber \\\le & {} (N+1)^{-2\sigma } \Vert A^{\sigma /2}f\Vert _{\alpha }^2 \end{aligned}$$
(9.16)

and thus the conclusion. \(\square \)

Proposition 4

Suppose \(\gamma >0\), \(f\left( \xi \right) =\left( 1+\xi \right) ^{\gamma }\), and \(g\left( \xi \right) =\left( 1-\xi \right) ^{\gamma }\). Then,

$$\begin{aligned} f \in D\left( A^{\sigma /2}\right) \qquad \qquad 0<\sigma <1+2\gamma , \end{aligned}$$
(9.17)

and

$$\begin{aligned} g \in D\left( A^{\sigma /2}\right) \qquad \qquad 0<\sigma <1+\alpha +2\gamma . \end{aligned}$$
(9.18)

Proof

Here we only prove (9.17). The proof of (9.18) is similar and can be also found in [19]. We have

$$\begin{aligned} A^{\sigma /2} f =\sum _{n=1}^\infty \nu _n^{\sigma /2} f_n P_n^{(\alpha ,0)} \end{aligned}$$
(9.19)

where

$$\begin{aligned} f_n = \int _{-1}^1 \left( 1+\xi \right) ^\gamma P_n^{(\alpha ,0)}\left( \xi \right) w_{\alpha }\left( \xi \right) \,\mathrm {d}\xi . \end{aligned}$$
(9.20)

It follows that (9.17) is valid if and only if

$$\begin{aligned} \Vert A^{\sigma /2} f\Vert _{\alpha }^2=\sum _{n=1}^\infty |\nu _n|^{\sigma }\, |f_n|^2<\infty . \end{aligned}$$
(9.21)

Thus we require an estimate on \(f_n\). By Rodrigues’ formula,

$$\begin{aligned} f_n = \frac{(-1)^n \sqrt{2n+\alpha +1}}{2^{n+\alpha /2+1/2} n!} \int _{-1}^1 \left( 1+\xi \right) ^\gamma \, \Big (\left( 1-\xi ^2\right) ^n w_{\alpha }\Big )^{(n)}\,\mathrm {d}\xi . \end{aligned}$$
(9.22)

We integrate by parts to get

$$\begin{aligned} f_n = \frac{(-1)^n \sqrt{2n+\alpha +1}}{2^{n+\alpha /2+1/2}\, n!}\, \frac{{\varGamma }\left( n-\gamma \right) }{{\varGamma }\left( -\gamma \right) } \int _{-1}^1 \left( 1+\xi \right) ^\gamma \, \left( 1-\xi \right) ^{n+\alpha } \,\mathrm {d}\xi \end{aligned}$$
(9.23)

which yields

$$\begin{aligned} f_n=2^{\alpha /2+\gamma +1/2} (-1)^n\frac{{\varGamma }\left( 1+\gamma \right) }{{\varGamma }\left( -\gamma \right) }\, \frac{{\varGamma }\left( n-\gamma \right) {\varGamma }\left( n+\alpha +1\right) }{n! {\varGamma }\left( n+\alpha +\gamma +2\right) }\sqrt{2n+\alpha +1}.\qquad \end{aligned}$$
(9.24)

We use Stirling’s approximation [17],

$$\begin{aligned} {\varGamma }\left( x\right) \sim \sqrt{\frac{2\pi }{x}}\left( \frac{x}{e}\right) ^x \qquad \qquad x\rightarrow \infty \end{aligned}$$
(9.25)

to get

$$\begin{aligned} f_n\sim c_{\alpha \gamma } n^{-3/2-2\gamma } \qquad \qquad n\rightarrow \infty . \end{aligned}$$
(9.26)

So, \(A^{\sigma /2} f\in L^2_{\alpha }\left( I,\mathbb {R}\right) \) if and only if \(\sigma <1+2\gamma \), and thus the conclusion. \(\square \)

Appendix 2: Computing \(R_{km}\) and \({\mathcal J}_k\)

Here, \(0<\alpha <1\), \(\beta =-1+\alpha \), \(w_\beta \left( s\right) =\left( 1-s\right) ^\beta \), and \(P_j^{(\beta ,0)}\) are the Jacobi polynomials associated with the weight \(w_\beta \), normalized such that their norm is one. We have

$$\begin{aligned} \psi _j\left( s\right) =2^{\alpha /2}\, P_j^{(\beta ,0)}\left( 2s-1\right) , \end{aligned}$$
(10.1)

and conversely

$$\begin{aligned} 2^{-\alpha /2}\, \psi _j\left( \frac{1+\xi }{2}\right) = P_j^{(\beta ,0)}\left( \xi \right) . \end{aligned}$$
(10.2)

We transform the expressions for \(R_{km}\) and \({\mathcal J}_k\) into integrals over \((-1,1)\): we get

$$\begin{aligned} R_{km}\left( \theta \right)= & {} \frac{\theta ^{1-\alpha }}{2} \int _{-1}^1 \psi _m\left( \frac{1+\xi }{2}\right) \, \psi _k\left( \theta \frac{1+\xi }{2}\right) \, \left( 1-\theta \frac{1+\xi }{2}\right) ^{\beta }\,\mathrm {d}\xi \nonumber \\= & {} \theta ^{1-\alpha } \int _{-1}^1 P_m^{(\beta ,0)}\left( \xi \right) \, P_k^{(\beta ,0)}\left( \theta \xi -\varphi \right) \, \Big (2-\theta \left( 1+\xi \right) \Big )^{\beta }\,\mathrm {d}\xi \end{aligned}$$
(10.3)

and

$$\begin{aligned} {\mathcal J}_k\left( f;t,h\right)= & {} \int _0^1 f\left( t+hs\right) \psi _k\left( \theta +\varphi s\right) \, w_{\beta }\left( s\right) \,\mathrm {d}s \nonumber \\= & {} \frac{1}{2^{\alpha /2}} \int _{-1}^1 f\left( t+h\frac{\xi +1}{2}\right) P_k^{(\beta ,0)}\left( \theta +\varphi \xi \right) \, w_{\beta }\left( \xi \right) \,\mathrm {d}\xi . \end{aligned}$$
(10.4)

In our implementation, the integrals above are approximated by a Gauss quadrature. Precisely, \(R_{km}\) is computed with the Gauss–Jacobi quadrature associated with the weight \(w_\beta \), and \({\mathcal J}_k\) is computed with the Gauss–Legendre quadrature.

The approximation of the matrix \({\mathcal R}\left( \theta \right) =\left( R_{km}\left( \theta \right) \right) \) requires the computation of some values every time \(\theta \) changes. To make the computation more efficient, the part of \({\mathcal R}\) that does not require adaptation can be stored. The Gauss quadrature provides

$$\begin{aligned} R_{km}\left( \theta \right) \approx \theta ^{1-\alpha }\sum _{j=1}^{N_q} P_m^{(\beta ,0)}\left( \xi _j\right) P_k^{(\beta ,0)}\left( \theta \xi _j-\varphi \right) \Big (2-\theta \left( 1+\xi _j\right) \Big )^{\beta } \omega _j \end{aligned}$$
(10.5)

where \(\omega _j\), and \(\xi _j\) are the quadrature weights and nodes, respectively. The last equation can be written as a matrix product

$$\begin{aligned} {\mathcal R}\left( \theta \right) ={\mathcal R}_2^T\left( \theta \right) {\mathcal R}_1. \end{aligned}$$
(10.6)

Notice that \(R_1\) does not change during the time-stepping, and can be stored and reused, while \({\mathcal R}_2\) must be computed whenever \(\theta \) changes. We have

$$\begin{aligned} \left( {\mathcal R}_1\right) _{j,m+1}&=P_m^{(\beta ,0)}\left( \xi _j\right) w_j \qquad \qquad j=1,\ldots ,N_q \quad m=0,\ldots ,P \end{aligned}$$
(10.7)
$$\begin{aligned} \left( {\mathcal R}_2\right) _{j,k+1}\left( \theta \right)&=P_k^{(\beta ,0)}\left( \theta \xi _j-\varphi \right) \Big (2-\theta \left( 1+\xi _j\right) \Big )^{\beta } \qquad \qquad j=1,\ldots ,N_q \quad k=0,\ldots ,P. \end{aligned}$$
(10.8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baffet, D., Hesthaven, J.S. High-Order Accurate Local Schemes for Fractional Differential Equations. J Sci Comput 70, 355–385 (2017). https://doi.org/10.1007/s10915-015-0089-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0089-1

Keywords

Navigation