Skip to main content
Log in

Finite-Difference Methods for Fractional Differential Equations of Order 1/2

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this work, we study approximations of solutions of fractional differential equations of order 1/2. We present a new method of approximation and obtain the order of convergence. The presentation is given within the abstract framework of a semidiscrete approximation scheme, which includes finite-element methods, finite-difference schemes, and projection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Alikhanov, “A new difference scheme for the time fractional diffusion equation,” J. Comput. Phys., 280, 424–438 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  2. E. G. Bajlekova, Fractional evolution equations in Banach spaces, Ph.D. thesis, Eindhoven University of Technology (2001).

  3. A. B. Bakushinsky and M. Yu. Kokurin, Iterative Methods for Approximate Solution of Inverse Problems, Springer-Verlag, Dordrecht (2004).

    MATH  Google Scholar 

  4. P. Brenner and V. Thomee, “On rational approximations of semigroups,” SIAM J. Numer. Anal., 16, 683–694 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Chen and M. Li, “On fractional resolvent operator functions,” Semigroup Forum, 80, 121–142 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  6. S. J. Farlow, Partial Differential Equations for Scientists and Engineers, Dover Publ., New York (1993).

    MATH  Google Scholar 

  7. D. Guidetti, B. Karasozen, and S. Piskarev, “Approximation of abstract differential equations,” J. Math. Sci., 122, 3013–3054 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Keyantuo and C. Lizama, “On a connection between powers of operators and fractional Cauchy problems,” J. Evol. Equ., 12, 245–265 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. M. Kokurin, “The uniqueness of a solution to the inverse Cauchy problem for a fractional differential equation in a Banach space,” Russ. Math., 57, No. 12, 16–30 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Li, C. Chen, and F.-B. Li, “On the fractional powers of generators of fractional resolvent families,” J. Funct. Anal., 259, 2702–2726 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Li, V. Morozov, and S. Piskarev, “On the approximations of derivatives of integrated semigroups, II,” J. Inverse Ill-Posed Probl., 19, 643–688 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Lin and C. Xu, “Finite-difference spectral approximations for the time-fractional diffusion equation,” J. Comput. Phys., 225, 1533–1552 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Liu, M. Li, J. Pastor, and S. Piskarev, “On the approximation of fractional resolution families,” Differ. Equ., 50, 927–937 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Liu, M. Li, and S. Piskarev, “Stability of difference schemes for fractional equations,” Differ. Equ., 51, No. 7, 908–927 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Liu, M. Li, and S. Piskarev, “Approximation of semilinear fractional Cauchy problem,” Comput. Meth. Appl. Math., 15, 203–212 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. M. Meerschaert and C. Tadjeran, “Finite difference approximations for fractional advectiondispersion flow equations,” J. Comput. Appl. Math., 172, 65–77 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Piskarev, Differential Equations in Banach Spaces and Their Approximations [in Russian], Moscow (2005).

  18. S. Piskarev, “Approximation of fractional equations in abstract spaces,” in: Proc. Int. Conf. “Differential Equations and Dynamical Systems,” July 8–12, Suzdal (2016), p. 273.

  19. S. Piskarev, “Fractional equations and difference schemes,” in: Proc. Int. Conference “Computational Methods in Applied Mathematics,” July 31–August 6, 2016, Javaskyla, Finland (2016).

  20. E. A. Polyanskii, The Method of Correction of Parabolic Equations in Nonhomogeneous Wave Guide [in Russian], Moscow, Nauka (1985).

    Google Scholar 

  21. V. Thomee and A. S. Vasudeva Murthy, “Approximate solution of u′ = −A 2 u using a relation between exp(−tA 2) and exp(itA),” Numer. Funct. Anal. Optim., 16, 1087–1096 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Vainikko, “Approximative methods for nonlinear equations (two approaches to the convergence problem),” Nonlin. Anal., 2, 647–687 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Vainikko and A. Pedas, ‘The properties of solutions of weakly singular integral equations,” J. Austral. Math. Soc., Ser. B, 22, 419–430 (1981).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Kokurin.

Additional information

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 133, Functional Analysis, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokurin, M.Y., Piskarev, S.I. & Spreafico, M. Finite-Difference Methods for Fractional Differential Equations of Order 1/2. J Math Sci 230, 950–960 (2018). https://doi.org/10.1007/s10958-018-3800-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-3800-6

Keywords and phrases

AMS Subject Classification

Navigation