Skip to main content
Log in

A Hybrid Implicit-Explicit Adaptive Multirate Numerical Scheme for Time-Dependent Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop a hybrid implicit and explicit adaptive multirate time integration method to solve systems of time-dependent equations that present two significantly different scales. We adopt an iteration scheme to decouple the equations with different time scales. At each iteration, we use an implicit Galerkin method with a fast time-step to solve for the fast scale variables and an explicit method with a slow time-step to solve for the slow variables. We derive an error estimator using a posteriori analysis which controls both the iteration number and the adaptive time-step selection. We present several numerical examples demonstrating the efficiency of our scheme and conclude with a stability analysis for a model problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amitai, D., Averbuch, A., Israeli, M., Itzikowitz, S.: Implicit-explicit parallel asynchronous solver of parabolic PDEs. SIAM J. Sci. Comput. 19(4), 1366–1404 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrus, J.F.: Numerical solutions of systems of ordinary differential equations separated into subsystems. SIAM J. Numer. Anal. 16, 605–611 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrus, J.F.: Stability of a multirate method for numerical integration of ODEs. Math. Comput. Appl. 25(2), 3–14 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartel, A., Gunther, M.: A multirate W-method for electrical networks in state-space formulation. J. Comput. Appl. Math. 147, 411–425 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biesiadecki, J.J., Skeel, R.D.: Dangers of multiple time step methods. J. Comput. Phys. 109, 318–328 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouzarth, E.L., Minion, M.L.: A multirate time integrator for regularized Stokeslets. J. Comput. Phys. 229, 4208–4224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Karniadakis, G., Shu, C.-W.: Discontinuous Galerkin Methods: Theory, Computation and Applications. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  8. Constantinescu, E.M., Sandu, A.: Multirate timestepping methods for hyperbolic conservation laws. J. Sci. Comput. 33, 239–278 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Constantinescu, E.M., Sandu, A.: Multirate explicit Adams methods for time integration of conservation laws. J. Sci. Comput. 38, 229–249 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dawson, C., Du, Q., Dupont, T.: A finite difference domain decomposition algorithm for numerical solution of the heat equation. Math. Comput. 57, 63–71 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dukowicz, J.K., Smith, R.D.: Implicit free-surface method for the Brian–Cox–Semtner ocean model. J. Geophys. Res. 99(C4), 7991–8014 (1994)

    Article  Google Scholar 

  12. Engstler, C., Lubich, C.: MUR8: a multirate extension of the eighth-order Dormand-Prince method. Appl. Numer. Math. 25, 185–192 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Estep, D., Ginting, V., Ropp, D., Shadid, J.N., Tavener, S.: An a posteriori-a priori analysis of multiscale operator splitting. SIAM J. Numer. Anal. 46(3), 1116–1146 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Estep, D., Ginting, V., Tavener, S.: A posteriori analysis of a multirate numerical method for ordinary differential equations (2011, in preparation)

  15. Gear, C.W., Wells, D.R.: Multirate linear multistep methods. BIT Numer. Math. 24, 484–502 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Higdon, R.L., de Szoeke, R.A.: Barotropic-baroclinic time splitting for ocean circulation modeling. J. Comput. Phys. 135, 30–53 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hofer, E.: A partially implicit method for large stiff systems of ODEs with only few equations introducing small time-constants. SIAM J. Numer. Anal. 13(5), 645–663 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hundsdorfer, W., Savcenco, V.: Analysis of a multirate theta-method for stiff ODEs. Appl. Numer. Math. 59, 693–706 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Layton, A.T., Minion, M.L.: Conservative multi-implicit spectral deferred correction methods for reacting gas dynamics. J. Comput. Phys. 194, 697–715 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Logg, A.: Multi-adaptive Galerkin methods for ODEs I. SIAM J. Sci. Comput. 24, 1879–1901 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Oberhuber, J.M.: Simulation of the Atlantic circulation with a coupled sea ice—mixed layer—isopycnal general circulation model. Part I. Model description. J. Phys. Oceanogr. 23, 808–829 (1993)

    Article  Google Scholar 

  22. Sand, J., Skelboe, S.: Stability of backward Euler multirate methods and convergence of waveform relaxation. BIT Numer. Math. 32, 350–366 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Chabaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chabaud, B., Du, Q. A Hybrid Implicit-Explicit Adaptive Multirate Numerical Scheme for Time-Dependent Equations. J Sci Comput 51, 135–157 (2012). https://doi.org/10.1007/s10915-011-9499-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9499-x

Keywords

Navigation