Skip to main content
Log in

Multirate Timestepping Methods for Hyperbolic Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper constructs multirate time discretizations for hyperbolic conservation laws that allow different timesteps to be used in different parts of the spatial domain. The proposed family of discretizations is second order accurate in time and has conservation and linear and nonlinear stability properties under local CFL conditions. Multirate timestepping avoids the necessity to take small global timesteps (restricted by the largest value of the Courant number on the grid) and therefore results in more efficient algorithms. Numerical results obtained for the advection and Burgers’ equations confirm the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrus, J.: Numerical solution for ordinary differential equations separated into subsystems. SIAM J. Numer. Anal. 16, 605–611 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andrus, J.: Stability of a multi-rate method for numerical integration of ODEs. Comput. Math. Appl. 25, 3–14 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bartel, A., Günther, M.: A multirate W-method for electrical networks in state-space formulation. J. Comput. Appl. Math. 147, 411–425 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berkvens, P., Botchev, M., Lioen, W., Verwer, J.: A zooming technique for wind transport of air pollution. Tech. report, Centrum voor Wiskundeen Informatica, 1999

  5. Boris, J., Book, D.: Flux-corrected transport I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 135, 172–186 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chakravarthy, S., Osher, S.: Numerical experiments with the Osher upwind scheme for the Euler equations. AIAA J. 21, 241–1248 (1983)

    Article  MathSciNet  Google Scholar 

  7. Chakravarthy, S., Osher, S.: Computing with high-resolution upwind schemes for hyperbolic equations. Lect. Appl. Math. 22, 57–86 (1985)

    MathSciNet  Google Scholar 

  8. Dawson, C., Kirby, R.: High resolution schemes for conservation laws with locally varying time steps. SIAM J. Sci. Comput. 22, 2256–2281 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dormand, J., Prince, P.J.: A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Engquist, B., Tsai, R.: Heterogeneous multiscale methods for stiff ordinary differential equations. Math. Comput. 74, 1707–1742 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Engstler, C., Lubich, C.: Multirate extrapolation methods for differential equations with different time scales. Computing 58, 173–185 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ferm, L., Lötstedt, P.: Space–time adaptive solution of first order PDES. J. Sci. Comput. 26, 83–110 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ferracina, L., Spijker, M.: Stepsize restrictions for total-variation-boundedness in general Runge–Kutta procedures. Appl. Numer. Math. 53, 265–279 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gear, C., Wells, D.: Multirate linear multistep methods. BIT 24, 484–502 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Godunov, S.: A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 47, 271–290 (1959)

    MathSciNet  Google Scholar 

  16. Goodman, J., LeVeque, R., Randall, J.: On the accuracy of stable schemes for 2D scalar conservation laws. Math. Comput. 45, 15–21 (1985)

    Article  MATH  Google Scholar 

  17. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 73–85 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Günther, M., Hoschek, M.: ROW methods adapted to electric circuit simulation packages. In: ICCAM ’96: Proceedings of the 7th International Congress on Computational and Applied Mathematics, pp. 159–170. Elsevier, Amsterdam (1997)

    Google Scholar 

  20. Günther, M., Kværnø, A., Rentrop, P.: Multirate partitioned Runge–Kutta methods. BIT 41, 504–514 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Günther, M., Rentrop, P.: Multirate ROW-methods and latency of electric circuits, Appl. Numer. Math. (1993)

  22. Hairer, E.: Order conditions for numerical methods for partitioned ordinary differential equations. Numer. Math. 36, 431–445 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hairer, E., Norsett, S., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems. Springer, Berlin (1993), Chapter II. 1

    MATH  Google Scholar 

  24. Hairer, E., Norsett, S., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, Berlin (1993) Chapter. II. 15

    MATH  Google Scholar 

  25. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  26. Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21, 193–223 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hundsdorfer, W., Koren, B., van Loon, M.: A positive finite-difference advection scheme. J. Comput. Phys. 117, 35–46 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hundsdorfer, W., Ruuth, S., Spiteri, R.: Monotonicity-preserving linear multistep methods. SIAM J. Numer. Anal. 41, 605–623 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kato, T., Kataoka, T.: Circuit analysis by a new multirate method. Electr. Eng. Jpn. 126, 55–62 (1999)

    Article  Google Scholar 

  30. Kirby, R.: On the convergence of high resolution methods with multiple time scales for hyperbolic conservation laws. Math. Comput. 72, 1239–1250 (2002)

    MathSciNet  Google Scholar 

  31. Kværnø, A.: Stability of multirate Runge–Kutta schemes. Int. J. Differ. Equ. Appl. 1, 97–105 (2000)

    MathSciNet  Google Scholar 

  32. Kvæ rnø, A., Rentrop, P.: Low order multirate Runge–Kutta methods in electric circuit simulation (1999)

  33. Laney, C.: Computational Gasdynamics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  34. LeVeque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  35. Logg, A.: Multi-adaptive Galerkin methods for ODEs I. SIAM J. Sci. Comput. 24, 1879–1902 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Logg, A.: Multi-adaptive Galerkin methods for ODEs II: Implementation and applications. SIAM J. Sci. Comput. 25, 1119–1141 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Logg, A.: Multi-adaptive Galerkin methods for ODEs III: A priory estimates. SIAM J. Numer. Anal. 43, 2624–2646 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  38. Osher, A., Chakravarthy, S.: High resolution schemes and the entropy condition. SIAM J. Numer. Anal. 21, 955–984 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  39. Osher, A., Chakravarthy, S.: Very high order accurate TVD schemes. In: Oscillation Theory, Computation, and Methods of Compensated Compactness. IMA Vol. Math. Appl., vol. 2, pp. 229–274. Springer, Berlin (1986)

    Google Scholar 

  40. Rice, J.: Split Runge–Kutta methods for simultaneous equations, J. Res. National Inst. Standards Technol. 60 (1960)

  41. Roe, P.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  42. Sand, J., Burrage, K.: A Jacobi waveform relaxation method for ODEs. SIAM J. Sci. Comput. 20, 534–552 (1998)

    Article  MathSciNet  Google Scholar 

  43. Savcenco, V., Hundsdorfer, W., Verwer, J.: A multirate time stepping strategy for parabolic PDE. Tech. Report MAS-E0516, Centrum voor Wiskundeen Informatica, 2005

  44. Savcenco, V., Hundsdorfer, W., Verwer, J.: A multirate time stepping strategy for stiff ODEs. BIT (2006, to appear)

  45. Shampine, L.: Conservation laws and the numerical solution of ODEs. Comput. Math. Appl. B 12, 1287–1296 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  46. Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988)

    Article  MATH  Google Scholar 

  47. Shu, C.-W., Osher, S.: TVB uniformly high-order schemes for conservation laws. Math. Comput. 49, 105–121 (1987)

    Article  MATH  Google Scholar 

  48. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  49. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  50. Spiteri, R., Ruuth, S.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40, 469–491 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  51. Sweby, P.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  52. Tang, H.-Z., Warnecke, G.: A class of high resolution schemes for hyperbolic conservation laws and convection-diffusion equations with varying time and space grids. J. Comput. Math. 24, 121–140 (2006)

    MATH  MathSciNet  Google Scholar 

  53. Vreugdenhil, C., Koren, B. (eds.): Numerical Methods for Advection–Diffusion Problems, vol. 45. Vieweg, Wiesbaden (1993)

    Google Scholar 

  54. Zalesak, S.: Fully multidimensional flux corrected transport algorithms for fluids. J. Comput. Phys. 31, 335–362 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Sandu.

Additional information

This work was supported by the National Science Foundation through award NSF CCF-0515170.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Constantinescu, E.M., Sandu, A. Multirate Timestepping Methods for Hyperbolic Conservation Laws. J Sci Comput 33, 239–278 (2007). https://doi.org/10.1007/s10915-007-9151-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-007-9151-y

Keywords

Navigation