Skip to main content
Log in

An Asymptotically Stable Semi-Lagrangian scheme in the Quasi-neutral Limit

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper deals with the numerical simulations of the Vlasov-Poisson equation using a phase space grid in the quasi-neutral regime. In this limit, explicit numerical schemes suffer from numerical constraints related to the small Debye length and large plasma frequency. Here, we propose a semi-Lagrangian scheme for the Vlasov-Poisson model in the quasi-neutral limit. The main ingredient relies on a reformulation of the Poisson equation derived in (Crispel et al. in C. R. Acad. Sci. Paris, Ser. I 341:341–346, 2005) which enables asymptotically stable simulations. This scheme has a comparable numerical cost per time step to that of an explicit scheme. Moreover, it is not constrained by a restriction on the size of the time and length step when the Debye length and plasma period go to zero. A stability analysis and numerical simulations confirm this statement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. IOP Publishing, Bristol (1991)

    Book  Google Scholar 

  2. Brenier, Y.: Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Commun. Part. Differ. Equ. 25, 737–754 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cohen, B.I., Langdon, A.B., Friedman, A.: Implicit time integration for plasma simulations. J. Comput. Phys. 46, 15 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  4. Crispel, P., Degond, P., Vignal, M.-H.: An asymptotically stable discretization for the Euler-Poisson system in the quasineutral limit. C.R. Acad. Sci. Paris, Ser. I 341, 341–346 (2005)

    MathSciNet  Google Scholar 

  5. Crispel, P., Degond, P., Vignal, M.-H.: An asymptotically preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit. J. Comput. Phys. 203, 208–234 (2007)

    Article  MathSciNet  Google Scholar 

  6. Crouseilles, N., Filbet, F.: Numerical approximation of collisional plasma by high order methods. J. Comput. Phys. 201(2), 546–572 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Crouseilles, N., Latu, G., Sonnendrücker, E.: Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation. Int. J. Appl. Math. Comput. Sci. 17(3), 101–115 (2007)

    Article  Google Scholar 

  8. Degond, P., Parzani, C., Vignal, M.-H.: Plasma expansion in vacuum: modeling the breakdown of quasineutrality. SIAM Multiscale Model. Simul. 2, 158 (2003)

    Article  MathSciNet  Google Scholar 

  9. Degond, P., Deluzet, F., Navoret, L.: An asymptotically stable Particle-In-cell (PIC) scheme for collisionless plasma simulations near quasineutrality. C.R. Acad. Sci. Paris, Ser. I 343, 613–618 (2006)

    MATH  MathSciNet  Google Scholar 

  10. Degond, P., Liu, J.G., Vignal, M.-H.: Analysis of an asymptotic preserving scheme for the Euler-Poisson system in the quasineutral limit. SIAM J. Numer. Anal. 46, 1298–1322 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Delcroix, J.-L., Bers, A.: Physique des Plasmas, vols. 1, 2. Inter Editions/Editions du CNRS, Paris (1994)

    Google Scholar 

  12. Duclous, R., Dubroca, B., Filbet, F.: Analysis of a high order finite volume scheme for the Vlasov-Poisson system. http://hal.archives-ouvertes.fr/hal-00287630/fr

  13. Fabre, S.: Stability analysis of the Euler-Poisson equations. J. Comput. Phys. 101, 445 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Filbet, F., Sonnendrücker, E.: Comparison of Eulerian Vlasov solvers. Comput. Phys. Commun. 151, 247–266 (2003)

    Article  Google Scholar 

  15. Filbet, F., Sonnendrücker, E., Bertrand, P.: Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172, 166–187 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fried, B.D., Comte, S.D.: The Plasma Dispersion Function. Academic Press, New York (1961)

    Google Scholar 

  17. Ha, S.Y., Slemrod, M.: Global existence of plasma ion sheaths and their dynamics. Commun. Math. Phys. 238, 149 (2003)

    MATH  MathSciNet  Google Scholar 

  18. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations. Series in Computational Mathematics, vol. 31. Springer, Berlin (2002)

    MATH  Google Scholar 

  19. Hewett, D.W., Nielson, C.W.: A multidimensional quasineutral plasma simulation model. J. Comput. Phys. 72, 121 (1987)

    Article  MATH  Google Scholar 

  20. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. IOP Publishing, Bristol (1998)

    Google Scholar 

  21. Langdon, A.B., Cohen, B.I., Friedman, A.: Direct implicit large time-step particle simulation of plasmas. J. Comput. Phys. 51, 107 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mankofsky, A., Sudan, R.N., Denavit, J.: Hybrid simulation of ion beams in background plasma. J. Comput. Phys. 51, 484 (1983)

    Article  Google Scholar 

  23. Masson, R.J.: Implicit moment particle simulations of plasmas. J. Comput. Phys. 41, 233 (1981)

    Article  MathSciNet  Google Scholar 

  24. Masson, R.J.: Implicit moment PIC-hybrid simulation of collisional plasmas. J. Comput. Phys. 51, 484 (1983)

    Article  Google Scholar 

  25. Nakamura, T., Yabe, T.: Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space. Comput. Phys. Commun. 120, 122–154 (1999)

    Article  MATH  Google Scholar 

  26. Rambo, P.W.: Finite-grid instability in quasineutral hybrid simulations. J. Comput. Phys. 118, 152 (1995)

    Article  MATH  Google Scholar 

  27. Shoucri, M.: Nonlinear evolution of the bump-on-tail instability. Phys. Fluids 22, 2038–2039 (1979)

    Article  Google Scholar 

  28. Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The semi-Lagrangian method for the numerical resolution of the Vlasov equations. J. Comput. Phys. 149, 201–220 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Crouseilles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belaouar, R., Crouseilles, N., Degond, P. et al. An Asymptotically Stable Semi-Lagrangian scheme in the Quasi-neutral Limit. J Sci Comput 41, 341–365 (2009). https://doi.org/10.1007/s10915-009-9302-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9302-4

Keywords

Navigation