Skip to main content

Advertisement

Log in

Conductivities of ionic fluids in bismuth oxysulfates

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We adopt a verified transition-state theory as well as the boundary perturbation method to calculate the ionic conductivities for a class of bismuth oxysulfates like \(\hbox {Bi}_9\hbox {SO}_{16.5}\) as well as \(\hbox {Bi}_6\hbox {S}_2\hbox {O}_{15}\). Our numerical results compared with previous experimental data of ionic conductivities of \(\hbox {Bi}_9\hbox {SO}_{16.5}\) (Smirnov et al. in Solid State Ionics 156:79–84, 2003) show rather good fit. We then predict numerically the ionic conductivities for \(\hbox {Bi}_6\hbox {S}_2\hbox {O}_{15}\) by selecting a suitable activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. V.I. Smirnov, V.G. Ponomareva, YuM Yukhin, N.F. Uvarov, Fluorite-related phases in the \({\rm Bi}_2{\rm O}_3-{\rm SO}_3\) system. Solid State Ionics 156, 79 (2003)

  2. M.G. Francesconi, A.L. Kirbyshire, C. Greaves, O. Richard, G. Van Tendeloo, Synthesis and structure of \({\rm Bi}_{14}{\rm O}_{20}({\rm SO}_4\)): A new Bismuth Oxide Sulfate. Chem. Mater. 10, 626 (1998)

  3. Y. Zhou, G.R. Patzke, \({\rm Bi}_2{\rm O}_3\) or \({\rm Bi}_6{\rm S}_2{\rm O}_{15}\) nanowires? The role of templating inorganic additives in nanomaterials formation. Cryst. Eng. Commun. 14, 1161 (2012)

  4. Y. Zhou, J.-D. Grunwaldt, F. Krumeich, Kb Zheng, Gr Chen, J. Stötzel, R. Frahm, G.R. Patzke, Hydrothermal synthesis of \({\rm Bi}_6{\rm S}_2{\rm O}_{15}\) nanowires: structural, in situ EXAFS, and humidity-sensing studies. Small 6, 1173 (2010)

  5. D. Brouillette, G. Perron, J.E. Desnoyers, Effect of viscosity and volume on the specific conductivity of lithium salts in solvent mixtures. Electrochim. Acta 44, 4721 (1999)

    Article  CAS  Google Scholar 

  6. A. Chagnes, B. Carré, P. Willmann, D. Lemordant, Ion transport theory of nonaqueous electrolytes. \({\rm LiClO}_4\) in g-butyrolactone: the quasi lattice approach. Electrochim. Acta 46, 1783 (2001)

  7. H. Eyring, M.S. Jhon, Significant liquid structures (Wiley, New York, 1969)

    Google Scholar 

  8. S. Glasstone, K.J. Laidler, H. Eyring, The theory of rate processes (McGraw-Hill, New York, 1941)

    Google Scholar 

  9. Yg Oh, M.S. Jhon, H. Eyring, Significant structure theory applied to liquid helium-3. Proc. Natl. Acad. Sci. (USA) 74, 4739 (1977)

    Article  CAS  Google Scholar 

  10. W.K.-H. Chu, Stokes slip flow between corrugated walls. Zeitsch. Angew. Math. Phys. 47, 591 (1996)

    Article  CAS  Google Scholar 

  11. R.K.-H. Chu, Effect of activation volume on the defect-induced anomalous electronic transport in \({\rm Rb}_{0.8}{\rm Fe}_2{\rm Se}_2\). J. Math. Chem. 52, 1831 (2014)

  12. C.G. Jesudason, An energy interconversion principle applied in reaction dynamics for the determination of equilibrium standard states. J. Math. Chem. 39, 201 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chu Rainer Kwang-Hua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwang-Hua, C.R. Conductivities of ionic fluids in bismuth oxysulfates. J Math Chem 53, 1105–1112 (2015). https://doi.org/10.1007/s10910-014-0441-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-014-0441-y

Keywords

Navigation