Skip to main content
Log in

Modeling the Solubility of Hydrogen Sulfide in Ionic Liquids Using van der Waals Equation of State

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study mathematically models the solubility of hydrogen sulfide in ten ionic liquids including 1-(2-hydroxyethyl)-3-imidazolium [Hoemim]+ with three different anions, 1-ethyl-3-methylimidazolium [emim]+ with two different anions, 1-hexyl-3-methylimidazolium [hmim]+ with two different anions, and 1-butyl-3-methylimidazolium [bmim]+ with three different anions. The modeling was performed by van der Waals (vdW) equation of state as a φ-φ approach in which the modified van der Waals–Berthelot mixing rule is used. The critical properties of ionic liquids have been estimated by a group of supplementary methods suggested by Valderrama and Robles, known as the modified Lyderson–Joback–Reid method. It is concluded that since the absolute average relative deviation is less than 1%, the developed model has a high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Kohl, A.L. and Nielsen, R.B., Gas Purification, Houston: Gulf, 1997, 5th ed.

    Google Scholar 

  2. Abkhiz, V. and Heyari, I., Comparison of amine solutions performance for gas sweetening, Asia-Pac. J. Chem. Eng., 2014, vol. 9, p. 656.

    Article  CAS  Google Scholar 

  3. Dashti, S.S., Shariati, A., and Nikou, M.R.K., Sensitivity analysis for selection of an optimum amine gas sweetening process with minimum cost requirement, Asia-Pac. J. Chem. Eng., 2015, vol. 10, p. 709.

    Article  Google Scholar 

  4. Yazdi, A., Najafloo, A., and Sakhaeinia, H., A method for thermodynamic modeling of H2S solubility using PC-SAFT equation of state based on a ternary solution of water, methyldiethanolamine and hydrogen sulfide, J. Mol. Liq., 2020, vol. 299, p. 112113.

  5. Galán Sánchez, L.M., Meinderasma, G.W., and de Haan, A.B., Solvent properties of functionalized ionic liquids for CO2 absorption, Chem. Eng. Res. Des., 2007, vol. 85, p. 31.

    Article  Google Scholar 

  6. Wilkes, J.S., Wassercheid, P., and Welton, T., Ionic Liquids in Synthesis, Weinheim: Wiley-VCH, 2002.

    Google Scholar 

  7. Sakhaeinia, H., Zare-Neyestanak, E., and Shokouhi, M., Evaluation of anion effect on the solubility of hydrogen sulfide in ionic liquids, using molecular dynamics simulation, Theor. Found. Chem. Eng., 2020, vol. 54, pp. 949–960.

  8. Shokouhi, M., Sakhaeinia, H., Jalili, A.H., Zoghi, A.T., and Mehdizadeh, A., Experimental diffusion coefficients of CO2 and H2S in some ionic liquids using semi-infinite volume method, J. Chem. Thermodyn., 2019, vol. 133, pp. 300–311.

  9. Keskin, S., Kayrak-Talay, D., Akman, U., and Hortaçsu, O., A review of ionic liquids towards supercritical fluid applications, J. Supercrit. Fluids, 2007, vol. 43, p. 150.

    Article  CAS  Google Scholar 

  10. Pitzer, K.S., Thermodynamics of electrolytes. l. Theoretical basis and general equations, J. Phys. Chem., 1973, vol. 77, p. 268.

    Article  CAS  Google Scholar 

  11. Krichevsky, I.R. and Ilinskaya, A.A., Partial molal volumes of gases dissolved in liquids (the thermodynamics of dilute solutions of non-electrolytes), Acta Physicochim. URSS, 1945, vol. 20, p. 327.

    Google Scholar 

  12. Saali, A., Shokouhi, M., Sakhaeinia, H., and Kazemi, N., Thermodynamic consistency test of vapor – liquid equilibrium data of binary systems including carbon dioxide (CO2) and ionic liquids using generic Redlich–Kwong equation of state, J. Solution Chem., 2020, vol. 49, pp. 383–404.

  13. Yokozeki, A. and Shiflett, M.B., Gas solubilities in ionic liquids using a generic van der Waals equation of state, J. Supercrit. Fluids, 2010, vol. 55, p. 846.

    Article  CAS  Google Scholar 

  14. Martin, Á., Méndez, D., and Bermejo, M.D., Application of a group contribution equation of state for the thermodynamic modeling of binary systems (gas+ionic liquids) with bis[(trifluoromethyl)sulfonyl]imide anion, J. Chem. Thermodyn., 2010, vol. 42, p. 524.

    Article  CAS  Google Scholar 

  15. Rahmati-Rostami, M., Behzadi, B., and Ghotbi, C., Thermodynamic modeling of hydrogen sulfide solubility in ionic liquids using modified SAFT-VR and PC-SAFT equations of state, Fluid Phase Equilib., 2011, vol. 309, p. 179.

    Article  CAS  Google Scholar 

  16. Shahriari, M., Dehghani, M.R., and Behzadi, B., A modified polar PHSC model for thermodynamic modeling of gas solubility in ionic liquids, Fluid Phase Equilib., 2012, vol. 313, p. 60.

    Article  Google Scholar 

  17. Yim, J.H. and Lim, J.S., CO2 solubility measurement in 1-hexyl-3-methylimidazolium ([HMIM]) cation based ionic liquids, Fluid Phase Equilib., 2013, vol. 352, p. 67.

    Article  CAS  Google Scholar 

  18. Bermejo, M.D., Fieback, T.M., and Martin, A., Solubility of gases in 1-alkyl-3-methylimidazolium alkyl sulfate ionic liquids: Experimental determination and modeling, J. Chem. Thermodyn., 2013, vol. 58, p. 237.

    Article  CAS  Google Scholar 

  19. Sousa, J.M.M.V., Granjo, J.F.O., Queimada, A.J., Ferreira, A.G.M., Oliveria, N.M.C., and Fonseca, I.M.A., Solubility of hydrofluorocarbons in phosphonium-based ionic liquids: Experimental and modelling study, J. Chem. Thermodyn., 2014, vol. 79, p. 184.

    Article  CAS  Google Scholar 

  20. Ramadin, M., Amplianitis, A., de Loos, T.W., and Vlugt, T.J.H., Solubility of CO2/CH4 gas mixtures in ionic liquids, Fluid Phase Equilib., 2014, vol. 375, p. 134.

    Article  Google Scholar 

  21. Ji, X., Held, C., and Sadowaki, G., Modeling imidazolium-based ionic liquids with ePC-SAFT. Part II. Application to H2S and synthesis-gas components, Fluid Phase Equilib., 2014, vol. 363, p. 59.

    Article  CAS  Google Scholar 

  22. NIST Scientific and Technical Database, Thermophysical properties of fluid systems. http://webbook.nist.gov/chemistry/fluid. Accessed December 22, 2015.

  23. Valderrama, J.O., Robles, P.A., and Rojas, V., Critical properties of ionic liquids. Revisited, Ind. Eng. Chem. Res., 2009, vol. 48, p. 6890.

    Article  CAS  Google Scholar 

  24. Valderrama, V. and Robles, P.A., Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids, Ind. Eng. Chem. Res., 2007, vol. 46, p. 1338.

    Article  CAS  Google Scholar 

  25. Yokozeki, A., Solubility of refrigerants in various lubricants, Int. J. Thermophys., 2001, vol. 22, p. 1057.

    Article  CAS  Google Scholar 

  26. Yokozeki, A., Solubility correlation and phase behaviors of carbon dioxide and lubricant oil mixtures, Appl. Energy, 2007, vol. 84, p. 159.

    Article  CAS  Google Scholar 

  27. Yokozeki, A. and Shiflett, M.B., Vapor–liquid equilibria of ammonia+ionic liquid mixtures, Appl. Energy, 2007, vol. 84, p. 1258.

    Article  CAS  Google Scholar 

  28. Shiflett, M.B. and Yokozeki, A., Solubilities and diffusivities of carbon dioxide in ionic liquids: [bmim][PF6] and [bmim][BF4], Ind. Eng. Chem. Res., 2005, vol. 44, p. 4453.

    Article  CAS  Google Scholar 

  29. Shiflett, M.B. and Yokozeki, A., Separation of CO2 and H2S using room-temperature ionic liquid [bmim][PF6], Fluid Phase Equilib., 2010, vol. 294 p. 105.

    Article  CAS  Google Scholar 

  30. Shokouhi, M., Farahani, H., and Hosseini-Jenab, M., Experimental solubility of hydrogen sulfide and carbon dioxide in dimethylformamide and dimethylsulfoxide, Fluid Phase Equilib., 2014, vol. 367, p. 29.

    Article  CAS  Google Scholar 

  31. Shokouhi, M., Farahani, H., Hosseini-Jenab, H., and Jalili, A.H., Solubility of hydrogen sulfide in N-methylacetamide and N,N-dimethylacetamide: experimental measurement and modeling, J. Chem. Eng. Data., 2015, vol. 60, p. 499.

    Article  CAS  Google Scholar 

  32. Shokouhi, M., Rezaeirad, A.R., Zekordi, S.M., Abbasghorbani, M., and Vahidi, M., Solubility of hydrogen sulfide in ethanediol, 1,2-propanediol, 1-propanol, and 2-propanol: Experimental measurement and modeling, J. Chem. Eng. Data., 2016, vol. 61, p. 512.

    Article  CAS  Google Scholar 

  33. Van Ness, H.C. and Abbott, M.M., Classical Thermodynamics of Nonelectrolyte Solutions, New York: McGraw-Hill, 1982.

    Google Scholar 

  34. Sakhaeinia, H., Jalili, A.H., Taghikhani, V., and Safekordi, A.A., Solubility of H2S in ionic liquids 1-ethyl-3-methylimidazolium hexafluorophosphate ([emim][PF6]) and 1-ethyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide ([emim][Tf2N]), J. Chem. Eng. Data, 2010, vol. 55, p. 5839.

    Article  CAS  Google Scholar 

  35. Sakhaeinia, H., Taghikhani, V., Jalili, A.H., Mehdizadeh, A., and Safekordi, A.A., Solubility of H2S in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions, Fluid Phase Equilib., 2010, vol. 298, p. 303.

    Article  CAS  Google Scholar 

  36. Rahmati-Rostami, M., Ghotbi, C., Hosseini-Jenab, M., Ahmadi, A.N., and Jalili, A.H., Solubility of H2S in ionic liquids [hmim][PF6], [hmim][BF4], and [hmim][Tf2N], J. Chem. Thermodyn., 2009, vol. 41, p. 1052.

    Article  CAS  Google Scholar 

  37. Jalili, A.H., Rahamti-Rostami, M., Ghotbi, C., Hosseini-Jenab, M., and Ahmadi, A.N., Solubility of H2S in ionic liquids [bmim][PF6], [bmim][BF4], and [bmim][Tf2N], J. Chem. Eng. Data, 2009, vol. 54, p. 1844.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Sakhaeinia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhaeinia, H. Modeling the Solubility of Hydrogen Sulfide in Ionic Liquids Using van der Waals Equation of State. Theor Found Chem Eng 54, 1276–1289 (2020). https://doi.org/10.1134/S0040579520060111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579520060111

Keywords:

Navigation