Skip to main content
Log in

Correlated and idempotent Dirac first-order density matrices with identical diagonal Fermion density: a route to extract a one-body potential energy in TDDFT

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

After a brief introduction to the use of the idempotent Dirac first-order density matrix (DM), its time-dependent generalization is considered. Special attention is focused on the equation of motion for the time-dependent DM, which is characterized by the one-body potential V(r, t) of time-dependent density functional theory. It is then shown how the force – V(r, t) can be extracted explicitly from this equation of motion. Following a linear-response treatment in which a weak potential V(r, t) is switched on to an initially uniform electron gas, the non-linear example of the two-electron spin-compensated Moshinsky atom is a further focal point. We demonstrate explicitly how the correlated DM for this model can be constructed from the idempotent Dirac DM, in this time-dependent example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dirac P.A.M.: Proc. Cam. Phil. Soc. 26, 70 (1930)

    Google Scholar 

  2. March N.H.: J. Phys. Chem. 86, 2262–2267 (1982)

    Article  CAS  Google Scholar 

  3. Parr R.G., Yang W.: Density-functional theory of atoms and molecules. Oxford University Press, New York (1989)

    Google Scholar 

  4. Slater J.C.: Phys. Rev. 81, 385–390 (1951)

    Article  CAS  Google Scholar 

  5. March N.H.: Self-consistent fields in atoms: hartree and Thomas-Fermi atoms. Pergamon Press, Oxford (1975)

    Google Scholar 

  6. Kohn W., Sham L.J.: Phys. Rev. 140, A1133 (1965)

    Article  Google Scholar 

  7. March N.H.: Phys. Rev. A 36, 5077–5078 (1987)

    Article  CAS  Google Scholar 

  8. March N.H., Murray A.M.: Phys. Rev. 120, 830–836 (1960)

    Article  Google Scholar 

  9. March N.H., Murray A.M.: Proc. Roy. Soc. London A 261, 119–133 (1961)

    Article  Google Scholar 

  10. Stoddart J.C., March N.H.: Proc. Roy. Soc. London A 299, 279–286 (1967)

    Article  CAS  Google Scholar 

  11. Löwdin P.O.: Phys. Rev. 97, 1474–1489 (1955)

    Article  Google Scholar 

  12. Sham L.J., Schlüter M.: Phys. Rev. Lett. 51, 1888–1891 (1983)

    Article  Google Scholar 

  13. Leeuwen R.: Phys. Rev. Lett. 76, 3610–3613 (1996)

    Article  Google Scholar 

  14. Görling A., Levy M.: Phys. Rev. A 50, 196–204 (1994)

    Article  Google Scholar 

  15. Runge E., Gross E.K.U.: Phys. Rev. Lett. 52, 997–1000 (1984)

    Article  CAS  Google Scholar 

  16. Zhao Q., Parr R.G.: Phys. Rev. A 46, 2337 (1992)

    Article  Google Scholar 

  17. Zhao Q., Parr R.G.: J. Chem. Phys. 98, 543 (1993)

    Article  CAS  Google Scholar 

  18. Zhao Q., Morrison R.C., Parr R.G.: Phys. Rev. A 50, 2138 (1994)

    Article  CAS  Google Scholar 

  19. Umrigar C.J., Gonze X.: Phys. Rev. A 50, 3827–3837 (1994)

    Article  CAS  Google Scholar 

  20. Amico I.D., Vignale G.: Phys. Rev. B 59, 7876–7887 (1999)

    Article  Google Scholar 

  21. Lein M., Kümmel S.: Phys. Rev. Lett. 94, 143003 (2005)

    Article  Google Scholar 

  22. Leeuwen R.: Phys. Rev. Lett. 82, 3863–3866 (1999)

    Article  Google Scholar 

  23. March N., Young W.H.: Nucl. Phys. 12, 237–240 (1959)

    Article  Google Scholar 

  24. Holas A., March N.H.: Phys. Rev. A 51, 2040–2048 (1995)

    Article  CAS  Google Scholar 

  25. E.K.U. Gross, C.A. Ulrich, U.J. Gossmann, in Density functional theory, ed. by E.K.U. Gross, R.M. Dreizler (Plenum Press, New York, 1995).

  26. Maitra N.T., Burke K.: Phys. Rev. A 63, 042501 (2001)

    Article  Google Scholar 

  27. Maitra N.T., Burke K.: Phys. Rev. A 64, 039901 (2001)

    Article  Google Scholar 

  28. Stoddart J.C., March N.H., Stott M.J.: Phys. Rev. 186, 683–696 (1969)

    Article  CAS  Google Scholar 

  29. Sakurai J.J.: Modern quantum mechanics. Addison-Wesley, Reading, Massachusetts (1994)

    Google Scholar 

  30. Feynman R.P., Hibbs A.R.: Quantum mechanics and path integrals. McGraw-Hill, New York (1965)

    Google Scholar 

  31. March N.H., Tosi M.P.: Philos. Mag. 28, 91–102 (1973)

    Article  Google Scholar 

  32. Lindhard J.: Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd 28, 1 (1954)

    Google Scholar 

  33. Giuliani G.F., Vignale G.: Quantum theory of the electron liquid. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  34. Moshinsky M.: Am. J. Phys. 36, 52 (1968)

    Article  Google Scholar 

  35. March N.H., Howard I.A., Nagy I., Rubio A.: Phys. Lett. A 288, 101–104 (2001)

    Article  CAS  Google Scholar 

  36. March N.H.: Phys. Lett. A 306, 63–65 (2002)

    Article  CAS  Google Scholar 

  37. Niehaus T.A., Suhai S., March N.H.: J. Phys. A: Math. Theor. 41, 085304 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Niehaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niehaus, T.A., March, N.H. & Suhai, S. Correlated and idempotent Dirac first-order density matrices with identical diagonal Fermion density: a route to extract a one-body potential energy in TDDFT. J Math Chem 47, 505–519 (2010). https://doi.org/10.1007/s10910-009-9592-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-009-9592-7

Keywords

Navigation