Skip to main content
Log in

Quasi-phi-functions and optimal packing of ellipses

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We further develop our phi-function technique for solving Cutting and Packing problems. Here we introduce quasi-phi-functions for an analytical description of non-overlapping and containment constraints for 2D- and 3D-objects which can be continuously rotated and translated. These new functions can work well for various types of objects, such as ellipses, for which ordinary phi-functions are too complicated or have not been constructed yet. We also define normalized quasi-phi-functions and pseudonormalized quasi-phi-functions for modeling distance constraints. To show the advantages of our new quasi-phi-functions we apply them to the problem of placing a given collection of ellipses into a rectangular container of minimal area. We use radical free quasi-phi-functions to reduce it to a nonlinear programming problem and develop an efficient solution algorithm. We present computational results that compare favourably with those published elsewhere recently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wascher, G., Hauner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183(3,16), 1109–1130 (2007)

    Article  MATH  Google Scholar 

  2. Bennell, J.A., Oliveira, J.F.: The geometry of nesting problems: a tutorial. Eur. J. Oper. Res. 184, 397–415 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Sugihara, K., Sawai, M., Sano, H., Kim, D.-S., Kim, D.: Disk packing for the estimation of the size of a wire bundle. Jpn J. Ind. Appl. Math. 21(3), 259–278 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burke, E.K., Hellier, R., Kendall, G., Whitwell, G.: Irregular packing using the line and arc no-fit polygon. Oper. Res. 58(4), 948–970 (2010)

    Article  MATH  Google Scholar 

  5. Milenkovic, V.J., Sacks, E.: Two approximate Minkowski sum algorithms. Int. J. Comput. Geom. Appl. 20(4), 485–509 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lodi, A., Martello, S., Vigo, D.: Two-dimensional packing problems: a survey. Eur. J. Oper. Res. 141, 241–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bennell, J.A., Scheithauer, G., Stoyan, Yu., Romanova, T.: Tools of mathematical modelling of arbitrary object packing problems. J. Ann. Oper. Res. Publ. Springer Neth. 179(1), 343–368 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chernov, N., Stoyan, Y., Romanova, T.: Mathematical model and efficient algorithms for object packing problem. Comput. Geom. Theory Appl. 43(5), 535–553 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. . Chernov, N., Stoyan, Y., Romanova, T., Pankratov, A.: Phi-functions for 2D-objects formed by line segments and circular arcs. Adv. Oper. Res. 2012, 26. Article ID 346358 (2012). doi:10.1155/2012/346358

  10. Bennell, J., Scheithauer, G., Stoyan, Y., Romanova, T., Pankratov, A.: Optimal clustering of a pair of irregular objects. J. Glob. Optim. (2014). doi:10.1007/s10898-014-0192-0

  11. StoyanYu, Chugay, A.: Mathematical modeling of the interaction of non-oriented convex polytopes. Cybern. Syst. Anal. 48(6), 837–845 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Stoyan, Y., Chugay, A.: Construction of radical free phi-functions for spheres and non-oriented polytopes. Rep. NAS Ukraine 12, 35–40 (2011). (In Russian)

    Google Scholar 

  13. Kallrath, J.: Cutting circles and polygons from area-minimizing rectangles. J. Glob. Optim. 43, 299–328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kallrath, J., Rebennack, S. (2013) Cutting ellipses from area-minimizing rectangles. J. Glob. Optim. (2013). doi:10.1007/s10898-013-0125-3

  15. Chazelle, B., Edelsbrunner, H., Guibas, L.J.: The complexity of cutting complexes. Discrete Comput. Geom. 4(2), 139–181 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wachter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stoyan, Y., Yaskov, G.: Packing congruent hyperspheres into a hypersphere. J. Glob. Optim. 52(4), 855–868 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

T. Romanova, Yu. Stoyan and A. Pankratov acknowledge the support of the Science and Technology Center in Ukraine and the National Academy of Sciences of Ukraine, Grant 5710.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Romanova.

Additional information

The article is written in collaboration with Prof. Dr. Chernov. He passed away after the return of his cancer. He will stay forever in our hearts.

Appendices

Appendix 1: Examples of phi-functions

Example 7

We consider the simplest example of phi-functions for two circles \(C_i \) of radii \(r_i \) and center points \((x_{C_i } ,y_{C_i } )\), \(i=1,2\). An ordinary phi-function, a normalized phi-function and a pseudonormalized phi-function for circles \(C_1 \) and \(C_2 \) may be defined in the following forms respectively:

Example 8

Let \(p_i^1 =(x_i^{\prime },y_i^{\prime })\), \(i=1,\ldots ,m_1 \), be the vertices of \(K_1 (u_1 )\), and \(p_j^2 =(x_j{}^{\prime \prime },y_j{}^{\prime \prime }), j=1,\ldots ,m_2 \), those of \(K_2 (u_2 )\), and \(K_1 (u_1 )=\{(x,y){:}{\upvarphi } _i \le 0,\;i=1,\ldots ,m_1 \}\), \({\upvarphi } _i ={\upalpha } _i^{\prime }x+{\upbeta } _i^{\prime }y+{\upgamma } _i ^{\prime }\), and \(K_2 (u_2 )=\{(x,y){:}{\uppsi } _j \le 0,\;j=1,\ldots ,m_2 \}, \,{\uppsi } _j ={\upalpha } _j^{{\prime }'}x+{\upbeta } _j^{{\prime }'}y+{\upgamma } _j ^{{\prime }'}\), where \(u_1 =(x_1 ,y_1 ,{\uptheta } _1 )\) and \(u_2 =(x_2 ,y_2 ,{\uptheta } _2 )\) are placement parameters of polygons \(K_1 \) and \(K_2 \). It should be noted that each point \((\tilde{x},\tilde{y})\in K(0,0,0)\) in the local coordinate system of a convex polygon K is transformed into point (xy):

$$\begin{aligned} x=\tilde{x}\cdot \cos {\uptheta } _K +\tilde{y}\cdot \sin {\uptheta } _K +x_K ,y=-\tilde{x}\cdot \sin {\uptheta } _K +\tilde{y}\cdot \cos {\uptheta } _K +y_K . \end{aligned}$$

A phi-function for two convex polygons \(K_1 \) and \(K_2 \) can be defined in the form

$$\begin{aligned} {\Phi }^{K_1 K_2 }=\max \left\{ \mathop {\max }\limits _{1\le i\le m_1 } \mathop {\min }\limits _{1\le j\le m_2 } {\upvarphi } _{ij} ,\mathop {\max }\limits _{1\le j\le m_2 } \mathop {\min }\limits _{1\le i\le m_1 } {\uppsi } _{ji} \right\} , \end{aligned}$$
(18)

where \({\upvarphi } _{ij} ={\upvarphi } _i (p_j^2 )={\upalpha } _i^{\prime }x_j^{\prime \prime }+{\upbeta } _i^{\prime }y_j^{\prime \prime }+{\upgamma } _i ^{\prime }\), \({\uppsi } _{ji} ={\uppsi } _j (p_i^1 )={\upalpha } _j^{\prime \prime }x_i ^{\prime }+{\upbeta } _j^{\prime \prime }y_i^ {\prime }+{\upgamma } _j^{\prime \prime }\).

In general, each of our phi-functions (ordinary, normalized, pseudonormalized) is formed by operations of minimum and maximum of continuous and everywhere defined functions. The more operations of maximum take part in forming of a phi-function the more nonlinear programming subproblems we need to solve.

For example, in order to reach the global minimum for the problem of packing of two convex polygons \(K_1 \) and \(K_2 \) in a rectangle of minimum area, using phi-function (18), we need to solve \(m_1 +m_2 \) nonlinear programming subproblems optimally. See details in [10].

Alternatively, in order to reach the global minimum of the latter problem, using quasi-phi-function (5), we need to solve only one nonlinear programming problem optimally. However, in the case the problem dimension is increased by two.

We may reasonably combine phi-functions and quasi-phi-functions in our models depending on types of our objects.

Appendix 2: The motivation of the epsilon parameter of the LOFTR procedure

We study the effect of the value of the parameter \({\varepsilon } \) on the computational time in our computational experiments. We take the value of \({\varepsilon } \) from the collection \(\{0.1,0.2,0.4,0.6,\ldots ,3.8,4.0,\ldots ,{\varepsilon } ^{*}\}\), where \({\varepsilon } ^{*}=\max \{l^{0},w^{0}\}\), and apply our algorithm to our instances, starting from the same feasible point \(u^{0}\) (point \(u^{0}\) is obtaned by SPA algorithm).

Fig. 13
figure 13

Dependence of the computational time on \({\upvarepsilon } \) for the instance “TC50”

From our computational experiments follows that there always exists an interval \([{\varepsilon } ^{-}, {\varepsilon } ^{+}]\), where the computational time reaches its “minimal” value and \({\varepsilon } \) weakly effects to the computational time. We take \({\varepsilon } =\frac{1}{n}\cdot \mathop {\sum }\nolimits _{i=1}^n {b_i } \) in our LOFRT algorithm since \(\frac{1}{n}\cdot \mathop {\sum }\nolimits _{i=1}^n {b_i } \in [{\varepsilon } ^{-},{\varepsilon } ^{+}]\) for our computational experiments. It shold be noted that the value of \({\varepsilon } \) is taken significantly greater than the computational accuracy of IPOPT.

As an example we provide a diagram for the instance “TC50”. The diagram given in Figure 13 shows the dependence of the computational time on the value of \({\varepsilon } \), where \([{\varepsilon } ^{-}=0.6,{\varepsilon } ^{+}=1.6]\).

Fig. 14
figure 14

A diagram of the LOFRT procedure

Appendix 3: A diagram of the LOFRT procedure

Figure 14 illustrates our LOFRT procedure. In fact on k-th step of the iterative procedure we solve the k-th subproblem on a subset \(W_k =W\cap {\Pi }_k^{\varepsilon } \), provided that we ignore redundant inequalities , and fix variables of \(\tau _k \), that have no effect on the value of our objective function in the “\({\varepsilon } \)-neighborhood” of point \(u^{(k)*} \) by variables \(x_i^k, y_i^k ,i=1,2,\ldots ,n\). If \(u_{w_k }^*\) belongs to the frontier of the “artificial” subset \({\Pi }_k^{\varepsilon } \), then we take the point as a center point for a subset \(\Pi ^{\varepsilon }_{k+1} \subset R^{\sigma }\) and continue our optimization procedure, otherwise we stop our LOFRT procedure. Figure 14 shows that each point of local minima \(u_{w_k }^*\) is the frontier point of the appropriate “artificial” subset \({\Pi }_k^{\varepsilon } \) for \(k=1,2,3,4,\) and the point \(u_{w_5 }^*\) is the interior point of subset \({\Pi }_5^{\varepsilon } \). We note that \(\hbox {dist}(u_{w_k }^*,u_{w_{k+1} }^*)\ge {\varepsilon } \) for \(k=1,2,3\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoyan, Y., Pankratov, A. & Romanova, T. Quasi-phi-functions and optimal packing of ellipses. J Glob Optim 65, 283–307 (2016). https://doi.org/10.1007/s10898-015-0331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0331-2

Keywords

Navigation