Skip to main content

Advertisement

Log in

Detection of Free Thiols and Fluorescence Response of Phycoerythrin Chromophore after Ultraviolet-B Radiation Stress

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The chemistry of thiol-chromophore linkage plays a central role in the nature of fluorescence of phycoerythrin (PE). Interaction of thiol and chromophore is crucial for the energy transfer, redox signal and inhibition of oxidative damage. In the present investigation the effects of ultraviolet-B radiation on an emission fluorescence intensity and wavelength shift in PE due to interaction between thiol and chromophore by remarkable strategy of detection technique was studied. Purification of PE was done by using a gel permeation and ion exchange chromatography that yielded a quite high purity index (6.40) in a monomeric (αβ) form. UV-B radiation accelerated the quenching efficiency (24.9 ± 1.52%) by reducing fluorescence emission intensity of thiol linked chromophore after 240 min of UV-B exposure. However, after blocking of transiently released free thiol by N-ethylmaleimide, quenching efficiency was increased (36.8 ± 2.80%) with marked emission wavelength shift towards shorter wavelengths up to 562 nm as compared to 575 nm in control. Emission fluorescence of free thiol was at maximum after 240 min that was detected specifically by monobromobimane (mBrB) molecular probe. The association/dissociation of bilin chromophore was analyzed by SDS- and Native-PAGE that also indicated a complete reduction in emission fluorescence. Our work clearly shows an early detection of free thiols and relative interaction with chromophore after UV-B radiation which might play a significant role in structural and functional integrity of terminal PE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Häder D-P, Williamson CE, Wängberg S, Rautio M, Rose KC, Gao K, Helbling EW, Sinha RP, Worrest R (2015) Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochem Photobiol Sci 14:108–126

    Article  PubMed  Google Scholar 

  2. Sinha RP, Hader D-P (2008) UV-protectants in cyanobacteria. Plant Sci 174:278–289

    Article  CAS  Google Scholar 

  3. Manney GL, Santee ML, Rex M, Livesey NJ, Pitts MC et al (2011) Unprecedented Arctic ozone loss in 2011. Nature 478:469–475

    Article  CAS  PubMed  Google Scholar 

  4. Kannaujiya VK, Sinha RP (2015) Impacts of UV-B and PAR on phycobiliproteins of Nostoc sp. HKAR-2 and Nostoc sp. HKAR-11. Protoplasma 252:1551–1561

    Article  CAS  PubMed  Google Scholar 

  5. Richa, Kannaujiya VK, Kesheri M, Singh G, Sinha RP (2011) Biotechnological potentials of phycobiliproteins. Int J Pharm Bio Sci 2:446–454

    CAS  Google Scholar 

  6. Sinha RP, Lebert M, Kumar A, Kumar HD, Häder D-P (1995) Spectroscopic and biochemical analyses of UV effects on phycobiliproteins of Anabaena sp. and Nostoc carmium. Bot Acta 108:87–92

    Article  CAS  Google Scholar 

  7. Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publication, Netherlands, pp. 139–216

    Chapter  Google Scholar 

  8. Baron M, Sochor J (2013) Estimation of thiol compounds cysteine and homocysteine in sources of protein by means of electrochemical techniques. Int J Electrochem Sci 8:11072–11086

    CAS  Google Scholar 

  9. Leichert LI, Jakob U (2004) Protein thiol modifications visualized in vivo. PLoS Biol 2:1723–1733

    Article  CAS  Google Scholar 

  10. Vass I (2012) Molecular mechanisms of photodamage in the photosystem II complex. Biochim Biophys Acta 1817:209–217

    Article  CAS  PubMed  Google Scholar 

  11. Holzwarth AR, Bittersmann E, Reuter W, Wehrmeyert W (1990) Studies on chromophore coupling in isolated phycobiliproteins. III. Picosecond excited state kinetics and time-resolved fluorescence spectra of different allophycocyanins from Mastigocladus laminosus. Biophys J 57:133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kupka M, Scheer H (2008) Unfolding of C-phycocyanin followed by loss of non-covalent chromophore-protein interactions 1. Equilibrium experiments. Biochim Biophys Acta 1777:94–103

    Article  CAS  PubMed  Google Scholar 

  13. Alvey RM, Biswas A, Schluchter WM, Bryant DA (2011) Attachment of noncognate chromophores to CpcA of Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 by heterologous expression in Escherichia coli. Biochemistry 7:4890–4902

    Article  Google Scholar 

  14. Kannaujiya VK, Sinha RP (2016) Thermokinetic stability of phycocyanin and phycoerythrin in food-grade preservatives. J Appl Phycol 28:1063–1070

    Article  CAS  Google Scholar 

  15. Soni B, Kalavadia B, Trivedi U, Madamwar D (2006) Extraction, purification and characterization of phycocyanin from Oscillatoria quadripunctulata-isolated from the rocky shores of bet-Dwarka, Gujarat, India. Process Biochem 41:2017–2023

    Article  CAS  Google Scholar 

  16. Bryant DA, Guglielmi G, de Marsac TN, Castlets AM, Cohen-Bazire G (1979) The structure of cyanobacterial phycobilisomes: a model. Arch Microbiol 123:113–127

    Article  CAS  Google Scholar 

  17. Kannaujiya VK, Sinha RP (2016) An efficient method for the separation and purification of phycobiliproteins from a rice-field cyanobacterium Nostoc sp. strain HKAR-11. Chromatographia 79:335–343

    Article  CAS  Google Scholar 

  18. Wang Y, Gong X, Wang S, Lixue C, Sun L (2014) Separation of native allophycocyanin and R-phycocyanin from marine red macroalga Polysiphonia urceolata by the polyacrylamide gel electrophoresis performed in novel buffer systems. PLoS One 9:e106369

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brekelman TR, Lagarias JC (1986) Visualization of Bilin linked peptides and proteins in polyacrylamide gels. Anal Biochem 156:194–201

    Article  Google Scholar 

  20. Patsoukis N, Georgiou CD (2005) Fluorometric determination of thiol redox state. Anal Bioanal Chem 383:923–929

    Article  CAS  PubMed  Google Scholar 

  21. Chowdhury A, Mukherjee PS (2015) Electron-rich triphenylamine-based sensors for picric acid detection. J Org Chem 80:4064–4075

    Article  CAS  PubMed  Google Scholar 

  22. Hannoush RN, Sun JL (2010) The chemical toolbox for monitoring protein fatty acylation and prenylation. Nat Chem Biol 6:498–506

    Article  CAS  PubMed  Google Scholar 

  23. Trivedi MV, Laurence JS, Siahaan TJ (2009) The role of thiols and disulfides in protein chemical and physical stability. Curr Protein Pept Sci 10:614–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Winther JR, Thorpe C (2014) Quantification of thiols and disulfides. Biochim Biophys Acta 1840:838–846

    Article  CAS  PubMed  Google Scholar 

  25. Kosower NS, Kosower EM, Newton GL, Ranney HM (1979) Bimane fluorescent labels: labeling of normal human red cells under physiological conditions. Proc Natl Acad Sci U S A 76:3382–3386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fahey RC, Newton GL (1987) Determination of low-molecular-weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography. Methods Enzymol 143:85–96

    Article  CAS  PubMed  Google Scholar 

  27. Pospíšil P (2009) Production of reactive oxygen species by photosystem II. Biochim Biophys Acta 1787:1151–1160

    Article  PubMed  Google Scholar 

  28. Rastogi RP, Singh SP, Häder D-P, Sinha RP (2010) Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′-7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun 397:603–607

    Article  CAS  PubMed  Google Scholar 

  29. Rinalducci S, Pedersen JZ, Zolla L (2008) Generation of reactive oxygen species upon strong visible light irradiation of isolated phycobilisomes from Synechocystis PCC 6803. Biochim Biophys Acta 1777:417–424

    Article  CAS  PubMed  Google Scholar 

  30. Munier M, Jubeau S, Wijaya A, Morançais M, Dumay J, Marchal L, Jaouen P, Fleurence J (2014) Physicochemical factors affecting the stability of two pigments: R-phycoerythrin of Grateloupia turuturu and B-phycoerythrin of Porphyridium cruentum. Food Chem 150:400–407

    Article  CAS  PubMed  Google Scholar 

  31. Rastogi RP, Sonani RR, Madamwar D (2015) Effects of PAR and UV radiation on the structural and functional integrity of phycocyanin, phycoerythrin and allophycocyanin isolated from the marine cyanobacterium Lyngbya sp. A09DM. Photochem Photobiol 91:837–844

    Article  CAS  PubMed  Google Scholar 

  32. Schmidt M, Krasselt A, Reuter W (2006) Local protein flexibility as a prerequisite for reversible chromophore isomerization in alpha-phycoerythrocyanin. Biochim Biophys Acta 1764:55–62

    Article  CAS  PubMed  Google Scholar 

  33. Rudyk O, Eaton P (2014) Biochemical methods for monitoring protein thiol redox states in biological systems. Redox Biol 2:803–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

V K Kannaujiya is thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India (09/013(0258)/2009-EMR-I), for financial assistance in the form of senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeshwar P. Sinha.

Ethics declarations

Conflict of Interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannaujiya, V.K., Sinha, R.P. Detection of Free Thiols and Fluorescence Response of Phycoerythrin Chromophore after Ultraviolet-B Radiation Stress. J Fluoresc 27, 561–567 (2017). https://doi.org/10.1007/s10895-016-1983-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1983-0

Keywords

Navigation