Skip to main content

Phycobilisome and Phycobiliprotein Structures

  • Chapter
The Molecular Biology of Cyanobacteria

Part of the book series: Advances in Photosynthesis ((AIPH,volume 1))

Summary

Phycobilisomes serve as the primary light-harvesting antennae for Photosystem II in cyanobacteria and red algae. These supramolecular complexes are primarily composed of phycobiliproteins, a brilliantly colored family of water-soluble proteins bearing covalently attached, open-chain tetrapyrroles known as phycobilins. In addition, phycobilisomes also contain smaller amounts ‘linker polypeptides,’ most of which do not bear chromophores. These components are absolutely required for proper assembly and functional organization of the structure. Phycobilisomes are constructed from two main structural elements: a core substructure and peripheral rods that are arranged in a hemidiscoidal fashion around that core. The core of most hemidiscoidal phycobilisomes is composed of three cylindrical subassemblies. The peripheral rods radiate from the lateral surfaces of the core substructure which are not in contact with the thylakoid membrane. Absorbed light energy is transferred by very rapid, radiation-less downhill energy transfer from phycoerythrin or phycoerythrocyanin (if present) to C-phycocyanin and then to allophycocyanin species that act as the final energy transmitters from the phycobilisome to the Photosystem II or (partially) Photosystem I reaction centers.

This chapter focuses on important recent developments concerning the structure and function of phycobilisome architecture and their constituent phycobiliproteins. Studies with the phycobilisomes and phycobiliproteins of the cyanobacterium Mastigocladus laminosus as will be emphasized. During the last decade tremendous progress has been made in the molecular biology of cyanobacteria—through gene sequencing, genetic analyses, and studies on gene regulation during adaptation. Many specialized functions of phycobilisome components have been revealed through the construction and characterization of deletion or insertional mutants and mutants harboring site-specific changes in phycobiliproteins. New phycobiliproteins, that play an important role in open-sea photosynthesis, have been discovered from marine cyanobacteria. Previously known to occur in red algae only, γsubunits have been discovered in these marine cyanobacteria. The complete amino acid sequences for this last class of phycobiliproteins have now been determined. The structures of new chromophores from cryptomonad phycobiliproteins have been determined. Enzymes catalyzing site-specific bilin-attachment to apo-biliproteins have been described and their genes sequenced. The amino acid sequences of all components constituting the phycobilisomes of some cyanobacterial strains have been determined, and analyses of these data have revealed phylogenetic relationships. Structural and functional domains of the linker polypeptides have been recognized, and the special roles of the multifunctional, large core-membrane linker phycobiliprotein in assembling the phycobilisome core and in energy transfer were discovered. The crystal structures for several phycobiliproteins have now been determined at near-atomic resolution. These studies provide not only the protein structures, but additionally provide the details of chromophore-protein interactions and the basis for understanding energy-transfer mechanisms and kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abad-Zapatero C, Fox JL and Hackert ML (1977) The quarternary structure of a unique phycobiliprotein: B-phycoerythrin from Porphyridium cruentum. Biochem Biophys Res Commun 78: 266–272.

    Article  PubMed  CAS  Google Scholar 

  • Alberte SA, Wood AM, Kursar TA and Guillard RRL (1984) Novel phycoerythrins in marine Synechococcus spp. Characterization and evolutionary and ecological implications. Plant Physiol 75: 732–739.

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM and Andersson B (1988) The dynamic photo-synthetic membrane and regulation of solar energy conversion. Trends Biochem Sci 13: 351–355.

    Article  PubMed  CAS  Google Scholar 

  • Anderson LK and Eiserling FA (1986) Asymmetrical core structure in phycobilisomes of the cyanobacterium Synechocystis 6701. J Mol Biol 191: 441–451.

    Article  PubMed  CAS  Google Scholar 

  • Anderson LK and Grossman AR (1990a) Genes for phycocyanin subunits in Synechocystis sp. strain PCC 6701 and assembly mutant UV16. J Bacteriol 172: 1289–1296.

    PubMed  CAS  Google Scholar 

  • Anderson LK and Grossman AR (1990b) Structure and light-regulated expression of phycoerythrin genes in wild-type and phycobilisome assembly mutants of Synechocystis sp. strain PCC 7601. J Bacteriol 172: 1297–1305.

    PubMed  CAS  Google Scholar 

  • Apt KE and Grossman AR (1993a) Characterization and transcript analysis of the major phycobiliprotein subunit genes from Aglaothamnion neglectum (Rhodophyta). Plant Mol Biol 21: 27–38.

    Article  PubMed  CAS  Google Scholar 

  • Apt KE and Grossman AR (1993b) Genes encoding phycobilisome linker polypeptides on the plastid genome of Aglaothamnion neglectum (Rhodophyta). Photosynth Res 35: 235–245.

    Article  CAS  Google Scholar 

  • Apt KE and Grossman AR (1993c) The phycobilisome β18 subunit gene of allophycocyanin is located on the plastid genome in Aglaothamnion neglectum (Rhodophyta) and cotranscribed with a putative core linker gene. J Phycol 29: 716–718.

    Article  CAS  Google Scholar 

  • Apt KE, Hoffman NE and Grossman AR (1993) The γsubunit of R-phycoerythrin and its possible mode of transport into the plastid of red algae. J Biol Chem 268: 16208–16215.

    PubMed  CAS  Google Scholar 

  • Belknap W and Haselkorn R (1987) Cloning and light regulation of expression of the phycocyanin Operon of the cyanobacterium Anabaena. EMBO J 6: 871–884.

    PubMed  CAS  Google Scholar 

  • Bernard C, Thomas JC, Mazel D, Mousseau A, Castets AM, Tandeau de Marsac N and Dubacq JP (1992) Characterization of the genes encoding phycoerythrin in the red alga Rhodeila violacea. Evidence for a splitting of the rpeB gene by an intron. Proc Natl Acad Sci USA 89: 9564–9568.

    Article  PubMed  CAS  Google Scholar 

  • Berns DS (1967) Immunochemistry of biliproteins. Plant Physiol 42: 1569–1586.

    Article  PubMed  CAS  Google Scholar 

  • Betz M, Rüegsegger U, Esteban AM, Sidler WA and Zuber H (1993) Reconstitution of the core complex (αβ)3 APCLc 8.9 of the phycobilisome from Mastigocladus laminosas using the Lc 8.9 linker polypeptide overexpressed in Escherichia coli. Biol Chem Hoppe-Seyler 374: 435–443.

    Article  PubMed  CAS  Google Scholar 

  • Bhalerao RP, Gillbro T and Gustafsson P (1991) Structure and energy transfer of the phycobilisome in a linker protein replacement mutant of cyanobacterium Synechococcus 7942. Biochim Biophys Acta 1060: 59–66.

    Article  CAS  Google Scholar 

  • Bhalerao RP, Lind LK, Persson CP and Gustafsson P (1993) Cloning of the phycobilisome rod linker genes from the cyanobacterium Synechococcus sp. PCC 6301 and their inactivation in Synechococcus sp. PCC 7942. Mol Gen Genet 237: 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Bishop JE, Rapoport H, Klotz AV, Chan CF, Glazer AN, Füglistaller P and Zuber H (1987) Chromopeptides from phycoerythrocyanin. Structure and linkage of the three bilin groups. J Am Chem Soc 109: 875–881.

    Article  CAS  Google Scholar 

  • Bogorad L (1975) Phycobiliproteins and complementary chromatic adaptation. Ann Rev Plant Physiol 26: 369–401.

    Article  CAS  Google Scholar 

  • Brock TD (1973) Evolutionary and ecological aspects of the cyanophytes. In: Carr NG and Whitton BA (eds) The Biology of the Cyanobacteria (Botanical Monographs, Vol 9) pp 487–500. Blackwell Scientific, Oxford.

    Google Scholar 

  • Bryant DA (1981) The photoregulated expression of multiple phycocyanin species: a general mechanism for the control of phycocyanin synthesis in chromatically adapting cyanobacteria. Eur J Biochem 119: 425–429.

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA (1982) Phycoerythrocyanin and phycoerythrin: Properties and occurrence in cyanobacteria. J Gen Microbiol 128: 835–844.

    CAS  Google Scholar 

  • Bryant DA (1987) The cyanobacterial photo synthetic apparatus: Comparison to those of higher plants and photosynthetic bacteria. In: Photosynthetic Picoplankton (Can Bull Fish Aquatic Sci, Vol 214), pp 423–500. Department of Fisheries and Oceans, Ottawa, Canada.

    Google Scholar 

  • Bryant DA (1988) Genetic analysis of phycobilisome biosynthesis assembly structure and function in the cyanobacterium Synechococcus sp PCC 7002. In: Stevens SE Jr and Bryant DA (eds) Light-Energy Transduction in Photosynthesis: Higher Plants and Bacterial Models, pp 62–90. American Society of Plant Physiologists, Rockville.

    Google Scholar 

  • Bryant DA (1991) Cyanobacterial phycobilisomes: Progress toward complete structural and functional analysis via molecular genetics. In: Bogorad L and Vasil IL (eds) Cell Culture and Somatic Cell Genetics of Plants, Vol 7B: The Photosynthetic Apparatus: Molecular Biology and Operation, pp 257–300. Academic Press, San Diego.

    Google Scholar 

  • Bryant DA (1992) Puzzles of chloroplast ancestry. Curr Biol 2: 240–242.

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA and Cohen-Bazire G (1981) Effects of chromatic illumination on cyanobacterial phycobilisomes. Evidence for the specific induction of a second pair of phycocyanin subunits in Pseudanabaena 7409 grown in red light. Eur J Biochem 119: 415–424.

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA, Glazer AN and Eiserling FA (1976) Characterization and structural properties of the major biliproteins of Anabaena sp. Arch Microbiol 110: 61–75.

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA, Hixson CS and Glazer AN (1978) Structural studies on phycobiliproteins. III. Comparison of bilin-containing peptides from the β-subunits of C-phycocyanin, R-phycocyanin and phycoerythrocyanin. J Biol Chem 253: 220–225.

    PubMed  CAS  Google Scholar 

  • Bryant DA, Guglielmi G, Tandeau de Marsac N, Castet AM and Cohen-Bazire G (1979) The structure of cyanobacterial phycobilisomes: A model. Arch Microbiol 123: 113–127.

    Article  CAS  Google Scholar 

  • Bryant DA, Cohen-Bazire G and Glazer AN (1981) Characterization of the biliproteins of Gloeobacter violaceus. Chromophore content of a cyanobacterial phycoerythrin carrying phycourobilin chromophore. Arch Microbiol 129: 190–198.

    Article  CAS  Google Scholar 

  • Bryant DA, de Lorimier R, Lambert DH, Dubbs JM, Stirewalt VL, Stevens SE, Porter RD, Tarn J and Jay E (1985) Molecular cloning and nucleotide sequence of the α and β subunits of allophycocyanin from the cyanelle genome of Cyanophora paradoxa. Proc Natl Acad Sci USA 82: 3242–3246.

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA, de Lorimier R, Guglielmi G and Stevens SE Jr (1990) Structural and compositional analyses of the phycobilisomes of Synechococcus sp PCC 7002 Analyses of the wild-type strain and a phycocyanin-less mutant constructed by interposon mutagenesis. Arch Microbiol 153: 550–560.

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA, Stirewalt VL, Glauser M, Frank G, Sidler W and Zuber H (1991) A small multigene family encodes the rod-core linker polypeptides of Anabaena sp. PCC 7120 phycobilisomes. Gene 107: 91–99.

    Article  PubMed  CAS  Google Scholar 

  • Capuano V, Mazel D, Tandeau de Marsac N and Houmard J (1988) Complete nucleotide sequence of the red-light specific set of phycocyanin genes from the cyanobacterium Calothrix. Nucl Acid Res 16: 1626–1626.

    Article  CAS  Google Scholar 

  • Capuano V, Braux A, Tandeau de Marsac, N and Houmard J (1991) The anchor polypeptide of cyanobacterial phycobilisomes. J Biol Chem 266: 7239–7247.

    PubMed  CAS  Google Scholar 

  • Capuano V, Thomas JC, Tandeau de Marsac N, and Houmard J (1993) An in vivo approach to define the role of the LCM: the key polypeptide of cyanobacterial phycobilisomes. J Biol Chem 268: 8277–8283.

    PubMed  CAS  Google Scholar 

  • Chou PY and Fasman GD (1978) Empirical predictions of protein conformation. Ann Rev Biochem 47: 251–276.

    Article  PubMed  CAS  Google Scholar 

  • Chung S, Frank G, Zuber H and Bryant DA (1994) Genes encoding two chlorosome components from the green sulfur bacteria Chlorobium vibrioforme strain 8327D and Chlorobium tepidum. Photosynthesis Res, in press.

    Google Scholar 

  • Cohen-Bazire G and Bryant DA (1982) Phycobilisomes: composition and structure. In: Carr NG and Whitton BA (eds) The Biology of the Cyanobacteria. Botanical Monographs, Vol 19, pp 143–190. Blackwell Scientific, Oxford.

    Google Scholar 

  • Conley PB, Lemaux PG, Lomax TL and Grossman AR (1986) Genes encoding major light-harvesting polypeptides are clustered on the genome of the cyanobacterium Fremyella diplosiphon. Proc Natl Acad Sci USA 83: 3924–3928.

    Article  PubMed  CAS  Google Scholar 

  • Conley PB, Lemaux PG and Grossman AR (1988) Molecular characterization and evolution of sequences encoding light-harvesting components in the chromatically adapting cyanobacterium Fremyella diplosiphon. J Mol Biol 199: 447–465.

    Article  PubMed  CAS  Google Scholar 

  • Cramer C (1862) Das Rhodospermin, ein krystalloidischer, quellbarer Körper, im Zellinhalt verschiedener Florideen. Vierteljahrschrift Naturforsch Ges (Zürich) 7: 350–365.

    Google Scholar 

  • Dayhoff MO, Schwartz RM and Orcutt BC (1978) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of Protein Sequence and Structure, Vol 5, pp 345–352. Natl Biomed Res Found, Washington, DC.

    Google Scholar 

  • Debreczeny MP, Sauer K, Zhou J and Bryant DA (1993) Monomeric C-phycocyanin at room temperature and 77 K: resolution of the absorption and fluorescence spectra of the individual chromophores and the energy-transfer rate constants. J Phys Chem 97: 9852–9862.

    Article  CAS  Google Scholar 

  • de Lorimier R, Bryant DA, Porter RD, Liu WY, Jay E and Stevens SE Jr (1984) Genes for the alpha and beta subunits of phycocyanin. Proc Natl Acad Sci USA 81: 7946–7950.

    Article  PubMed  Google Scholar 

  • de Lorimier R, Bryant DA and Stevens SE Jr (1990a) Genetic analysis of a 9 kDa phycocyanin-associated linker polypeptide. Biochim Biophys Acta 1019: 29–41.

    Article  PubMed  Google Scholar 

  • de Lorimier RG Guglielmi DA Bryant and SE Stevens Jr (1990b) Structure and mutation of a gene encoding a 33000-molecular-weight phycocyanin-associated linker polypeptide. Arch Microbiol 153: 541–549.

    Article  PubMed  Google Scholar 

  • de Lorimier R, Chen C-C J and Glazer AN (1992) Sequence comparison of two highly homologous phycoerythrins differing in bilin composition. Plant Mol Biol 20: 353–356.

    Article  PubMed  Google Scholar 

  • de Lorimier R, Wilbanks SM and Glazer AN (1993) Genes of the R-phycocyanin II locus of marine Synechococcus spp., and comparison of protein-chromophore interactions in phyco-cyanins differing in bilin composition. Plant Mol Biol 21: 225–237.

    Article  PubMed  Google Scholar 

  • Devereux J, Haeberli P and Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387–395.

    Article  PubMed  CAS  Google Scholar 

  • Devereux J, Haeberli P, and Marquess P (1987) Sequence Analysis Software Package of the Genetics Computer Group, Version 5*. University of Wisconsin, Biotechnology Center, Madison.

    Google Scholar 

  • Dobler M, Dover SD, Laves K, Binder A and Zuber H (1972) Crystallization and preliminary crystal data of C-phycocyanin. J Mol Biol 71: 785–787.

    Article  PubMed  CAS  Google Scholar 

  • Dubbs JM and Bryant DA (1987) Organization of the genes encoding phycoerythrin and the two differently expressed phycocyanins in the cyanobacterium Pseudanabaena PCC 7409. In: Biggins J (ed) Progress in Photosynthesis Research, Vol IV, pp 765–768. Martinus-Nijhoff, Dordrecht.

    Google Scholar 

  • Dubbs JM and Bryant DA (1991) Molecular cloning and transcriptional analysis of the cpeBA operon of the cyanobacterium Pseudanabaena sp. PCC 7409. Mol Microbiol 5: 3073–3086.

    Article  PubMed  CAS  Google Scholar 

  • Dubbs JM and Bryant (1993) Organization and transcription of the genes encoding two differentially expressed phycocyanins in the cyanobacterium Pseudanabaena sp. PCC 7409. Photosynth Res 36: 169–183.

    Article  CAS  Google Scholar 

  • Ducret A, Sidler W, Frank G and Zuber H (1994) Complete amino acid sequence of R-Phycocyanin I α-and β-subunits from the red alga Porphyridium cruentum. Eur J Biochem 221: 563–580.

    Article  PubMed  CAS  Google Scholar 

  • Duerring M, Huber R and Bode W (1988) The structure of γ-N-methylasparagine in C-phycocyanin from Mastigocladus laminosus and Agmenellum quadruplicatum. FEBS Lett 236: 167–170.

    Article  CAS  Google Scholar 

  • Duerring M, Huber R, Bode W, Rümbeli R and Zuber H (1990) Refined three-dimensional structure of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus at 2.7 Å. J Mol Biol 211: 633–644.

    Article  PubMed  CAS  Google Scholar 

  • Duerring M, Schmidt GB and Huber R (1991) Isolation, crystallization, crystal structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacterium Fremyella diplosiphon at 1.66 Å resolution. J Mol Biol 217: 577–592.

    Article  PubMed  CAS  Google Scholar 

  • Eberlein M and Kufer W (1990) Genes encoding both subunits of phycoerythrocyanin a light harvesting biliprotein from the cyanobacterium Mastigocladus laminosus. Gene 94: 133–136.

    Article  PubMed  CAS  Google Scholar 

  • Egelhoff T and Grossman AR (1983) Cytoplasmic and chloroplast synthesis of phycobilisome polypeptides. Proc Natl Acad Sci USA 80: 3339–3343.

    Article  PubMed  CAS  Google Scholar 

  • Esteban MA (1993) Sequenzierung Klonierung und Charak-terisierung der Gene von Core-Polypeptiden aus dem Cyanobakterium Mastigocladus laminosus. Ph. D. dissertation Nr 10040, Eidgenössische Technische Hochschule, Zürich.

    Google Scholar 

  • Esteban A, Sidler W, Frank G, Füglistaller P, Rümbeli R and Zuber H (1990) Isolation and characterization of the allophycocyanin complexes of the cyanobacterium Mastigocladus laminosus. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol II, pp 93–96. Kluwer, Dordrecht.

    Google Scholar 

  • Esteban AM, Stirewalt VL, Bryant DA, Rüegsegger U, Sidler W and Zuber H (1994) Genes encoding the phycobilisome core components from the cyanobacterium Mastigocladus laminosus: Nucleotide sequences, organization and function, in preparation.

    Google Scholar 

  • Fairchild CD and Glazer AN (1994) Oligomeric structure, enzyme kinetics, and substrate specificity of the phycocyanin α subunit phycocyanobilin lyase. J Biol Chem 269: 8686–8694.

    PubMed  CAS  Google Scholar 

  • Fairchild CD, Jones IK and Glazer AN (1991) Absence of glycosylation on cyanobacterial phycobilisome linker polypeptides and rhodophytan phycoerythrins. J Bacteriol 173: 2985–2992.

    PubMed  CAS  Google Scholar 

  • Fairchild CD, Zhao J, Zhou J, Colson SE, Bryant DA and Glazer AN (1992) Phycocyanin α-subunit phycocyanobilin lyase. Proc Natl Acad Sci USA 89: 7017–7021.

    Article  PubMed  CAS  Google Scholar 

  • Fay P and Van Baalen C (1987) The Cyanobacteria. Elsevier, Amsterdam.

    Google Scholar 

  • Federspiel NA and Grossman AR (1990) Characterization of the light-regulated operon encoding the phycoerythrin-associated linker proteins from the cyanobacterium Fremyella diplosiphon. J Bacteriol 172: 4072–4081.

    PubMed  CAS  Google Scholar 

  • Federspiel NA and Scott L (1992) Characterization of a light-regulated gene encoding a new phycoerythrin-associated linker protein from the cyanobacterium Fremyella diplosiophon. J Bacteriol 174: 5994–5998.

    PubMed  CAS  Google Scholar 

  • Ficner R and Huber H (1992) The three-dimensional structure of the light harvesting pigment protein phycoerythrin from red algae. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 57–61. Kluwer, Dordrecht.

    Google Scholar 

  • Ficner R and Huber R (1993) Refined crystal structure of phycoerythrin from Porphyridium cruentum at 0.23 nm resolution and localization of the γ subunit. Eur J Biochem 218: 103–106.

    Article  PubMed  CAS  Google Scholar 

  • Ficner R, Lobeck K, Schmidt G and Huber R (1992) Isolation, crystallization, crystal structure analysis and refinement of B-phycoerythrin from the red alga Porphyridium sordidum at 2.2 Å resolution. J Mol Biol 228: 935–950.

    Article  PubMed  CAS  Google Scholar 

  • Fillat MF, Flores E and Gómez-Moreno C (1993) Homology of the N-terminal domain of the petH gene product from Anabaena sp. PCC 7119 to the CpcD phycobilisome linker polypeptide. Plant Mol Biol 22: 725–729.

    Article  PubMed  CAS  Google Scholar 

  • Fisher RG and Sweet RM (1980) Treatment of diffraction data from protein crystals twinned by merohedry. Acta Crystallogr A36: 755–760.

    CAS  Google Scholar 

  • Fisher RG, Woods NE, Fuchs HE and Sweet RM (1980) Three-dimensional structure of C-phycocyanin and B-phycoerythrin at 5-Å resolution. J Biol Chem 255: 5082–5089.

    PubMed  CAS  Google Scholar 

  • Fischer R and Scheer H (1988) Energy transfer within PC trimers of Mastigocladus laminosus studied by picosecond time-resolved transient absorption spectroscopy. Z Naturforsch 43: 55–62.

    Google Scholar 

  • Fischer R, Siebzehnrübel S and Scheer H (1988) C-phycocyanin from Mastigocladus laminosus: Chromophore assignment in higher aggregates by cystein modification In: Scheer H and Schneider S (eds) Photosynthetic Light-Harvesting Systems, pp 71–76. Walter de Gruyter, Berlin.

    Google Scholar 

  • Förster T (1965) Delocalized excitation and excitation transfer In: Sinanoglu O (ed) Modern Quantum Chemistry, Part III, pp 93–137. Academic, New York.

    Google Scholar 

  • Förster T (1967) Mechanisms of energy transfer In: Florkin M and Stotz EH (eds) Comprehensive Biochemistry, Vol 22, pp 61–80. Elsevier, Amsterdam.

    Google Scholar 

  • Frank G, Sidler W, Widmer H and Zuber H (1978) The complete amino acid sequence of both subunits of C-phycocyanin from the cyanobacterium Mastigocladus laminosus. Hoppe-Seyler’s Z Physiol Chem 359: 1491–1507.

    Article  PubMed  CAS  Google Scholar 

  • Freidenreich P, Apell GS and Glazer AN (1978) Structural studies on phycobiliproteins. II. C-phycocyanin: amino acid sequence of the β subunit. Specific cleavage of the α-subunit. J Biol Chem 253: 212–219.

    PubMed  CAS  Google Scholar 

  • Füglistaller P, Widmer H, Sidler W, Frank G and Zuber H (1981) Isolation and characterization of phycoerythrocyanin and chromatic adaptation of the thermophilic cyanobacterium Mastigocladus laminosus. Arch Microbiol 129: 268–274.

    Article  Google Scholar 

  • Füglistaller P, Suter F and Zuber H (1983) The complete amino-acid sequence of both subunits of phycoerythrocyanin from the thermophilic cyanobacterium Mastigocladus lamionosus. Hoppe Seyler’s Z Physiol Chem 364: 691–712.

    Article  PubMed  Google Scholar 

  • Füglistaller P, Rümbeli R, Suter F and Zuber H (1984) Minor polypeptides from the phycobilisome of the cyanobacterium Mastigocladus laminosus. Isolation, characterization and amino-acid sequences of a colourless 8.9 kDa polypeptide and of a 16.2 kDa phycobiliprotein. Hoppe-Seyler’s Z Physiol Chemie 365: 1085–1096.

    Article  Google Scholar 

  • Füglistaller P, Suter F and Zuber H (1985) Linker polypeptides of the phycobilisome from the cyanobacterium Mastigocladus laminosus: Amino-acid sequences and relationships. Biol Chem Hoppe-Seyler 366: 993–1001.

    Article  PubMed  Google Scholar 

  • Füglistaller P, Suter F and Zuber H (1986a) Linker polypeptides of the phycobilisome from the cyanobacterium Mastigocladus laminosus. I: Isolation and characterization of phycobiliprotein-linker-polypeptide complexes. Biol Chem Hoppe-Seyler 367: 601–614.

    Article  PubMed  Google Scholar 

  • Füglistaller P, Suter F and Zuber H (1986b) Linker polypeptides of the phycobilisome from the cyanobacterium Mastigocladus laminosus: II: Amino-acid sequences and functions. Biol Chem Hoppe-Seyler 367: 615–626.

    Article  PubMed  Google Scholar 

  • Füglistaller P Mimuro M Suter F and Zuber H (1987) Allophycocyanin complexes of the phycobilisome from Mastigocladus laminosus: Influence of the linker polypeptide Lc 8.9 on the spectral properties of the phycobiliprotein subunits. Biol Chem Hoppe-Seyler 368: 353–367.

    Article  PubMed  Google Scholar 

  • Gantt E (1975) Phycobilisomes: Light-harvesting pigment complexes. BioScience 25: 781–788.

    Article  CAS  Google Scholar 

  • Gantt E (1979) Phycobiliproteins of Cryptophyceae In: Levandowsky M and Hutner SA (eds) Biochemistry and Physiology of Protozoa 2nd ed, Vol 1, pp 121–137. Academic Press, New York.

    Google Scholar 

  • Gantt E (1980a) Photosynthetic cryptophytes. In: Cox E (ed) Phytoflagellates: Form and function, pp 381–405. Elsevier, Amsterdam.

    Google Scholar 

  • Gantt E (1980b) Structure and function of phycobilisomes: Light harvesting pigment complexes in red and blue-green algae. Int Rev Cytol 66: 45–80.

    Article  CAS  Google Scholar 

  • Gantt E (1986) Phycobilisomes In: Staehelin LA and Arntzen CJ (eds) Photosynthesis III. Encyclopedia of Plant Physiology. New Series, Vol. 19, pp. 260–268. Springer-Verlag, Berlin.

    Google Scholar 

  • Gantt E (1988) Phycobilisomes: Assessment of core structure and thylakoid interaction. In: Stevens SE Jr and Bryant DA (eds) Light-Energy Transduction in Photosynthesis: Higher Plants and Bacterial Models, pp 91–101. American Society of Plant Physiologists, Rockville, MD.

    Google Scholar 

  • Gantt E and Conti SF (1966a) The ultrastructure of Phorphyridium cruentum. J Cell Biol 26: 338–365.

    Google Scholar 

  • Gantt E and Conti SF (1966b) Granules associated with the chloroplast lamellae of Porphyridium cruentum. J Cell Biol 29: 423–434.

    Article  PubMed  CAS  Google Scholar 

  • Gantt E and Conti SF (1969) Ultrastructure of blue-green algae. J Bacteriol 97: 1486–1493.

    PubMed  CAS  Google Scholar 

  • Gantt E and Lipschultz CA (1972) Phycobilisomes of Porphyridium cruentum’, isolation. J Cell Biol 54: 313–324.

    Article  PubMed  CAS  Google Scholar 

  • Gantt E and Lipschultz CA (1973) Energy transfer in phycobilisomes from phycoerythrin to allophycocyanin. Biochim Biophys Acta 292: 858–861.

    Article  PubMed  CAS  Google Scholar 

  • Gantt E and Lipschultz CA (1980) Structure and phycobiliprotein composition of phycobilisomes from Griffithsia pacifica Rhodophyceae. J Phycol 16: 394–398.

    Article  CAS  Google Scholar 

  • Gantt E Edwards MR and Conti SF (1968)Ultrastructure of Porphyridium aerugineum, a blue-green colored Rhodophytan. J Phycol 4: 65–71.

    Article  Google Scholar 

  • Gantt E, Lipschultz CA and Zilinskas BA (1976) Further evidence for a phycobilisome model from selective dissociation fluorescence emission immunoprecipitation and electron microscopy. Biochim Biophys Acta 430: 375–388.

    Article  PubMed  CAS  Google Scholar 

  • Gerola PD, Højrup P and Olson JM (1988) A comparison of the bacteriochlorophyll c-binding proteins of Chlorobium and Chloroflexus. In: Scheer H and Schneider S (eds) Photosynthetic Light-Harvesting Systems, pp 129–139. Walter de Gruyter, Berlin.

    Google Scholar 

  • Giddings TH Jr, Wasmann C and Staehelin LA (1983) Structure of the thylakoids and envelope membranes of the cyanelles of Cyanophora paradoxa. Plant Physiol 71: 409–419.

    Article  PubMed  CAS  Google Scholar 

  • Gillbro T, Sharkov AV, Kryukov IV, Khoroshilov EV, Kryukov PG, Fischer R and Scheer H (1993) Förster energy transfer between neighbouring chromophores in C-phycocyanin trimers. Biochim Biophys Acta 1140: 321–326.

    Article  CAS  Google Scholar 

  • Gindt YM, Zhou J, Bryant DA and Sauer K (1992) Core mutations of Synechococcus sp. PCC 7002 phycobilisomes: a spectroscopic study. J Photochem Photobiol B: Biol 15: 75–89.

    Article  CAS  Google Scholar 

  • Gingrich JC, Lundell DJ and Glazer AN (1983) Core substructure in cyanobacterial phycobilisomes. J Cell Biol 22: 1–14.

    CAS  Google Scholar 

  • Glauser M (1991) Studies on the structure and function of cyanobacterial phycobilisomes: Genetic and protein-chemical characterization of linker polypeptides in the phycobilisomes of Mastigocladus laminosus and Anabaena sp PCC 7120. Ph. D. Dissertation ETH-Nr 9560, Eidgenössische Technische Hochschule, Zürich.

    Google Scholar 

  • Glauser M, Sidler W, Frank G and H Zuber (1990) Studies on the rod-substructure of the phycobilisome from the cyanobacterium Mastigocladus laminosus. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol II, pp. 89–92. Kluwer, Dordrecht.

    Google Scholar 

  • Glauser M, Bryant DA, Frank G, Wehrli E, Rusconi S, Sidler W and Zuber H (1992a) Phycobilisome structure in the cyanobacteria Mastigocladus laminosus and Anabaena sp. PCC 7120. Eur J Biochem 205: 907–915.

    Article  PubMed  CAS  Google Scholar 

  • Glauser M, Stirewalt VL, Bryant DA, Sidler W and H Zuber (1992b) Structure of the genes encoding the rod-core linker polypeptides of Mastigocladus laminosus phycobilisomes and functional aspects of the phycobiliprotein/linker-polypeptide interactions. Eur J Biochem 205: 927–973.

    Article  PubMed  CAS  Google Scholar 

  • Glauser M, Sidler W, Graham KW, Bryant DA, Frank G, Wehrli E and Zuber H (1992c) Three C-phycoerythin-associated linker polypeptides in the phycobilisome of green-light-grown Calothrix sp. PCC 7601. FEBS Lett 297: 19–23.

    Article  PubMed  CAS  Google Scholar 

  • Glauser M, Sidler W and Zuber H (1993) Isolation, characterization and reconstitution of phycobiliprotein rod-core linker polypeptide complexes from the phycobilisome of Mastigocladus laminosus. Photochem Photobiol 57: 344–351.

    Article  CAS  Google Scholar 

  • Glazer AN (1976) Phycocyanins: structure and function. In: Smith DC (ed) Photochemical and Photobiological Reviews, Vol I, pp 71–115. Plenum Press, New York.

    Chapter  Google Scholar 

  • Glazer AN (1981) Photosynthetic accessory proteins with bilin prosthetic groups. In: Hatch MD and Boardman NK (eds) The Biochemistry of Plants, Vol 8, pp 51–96. Academic Press, New York.

    Google Scholar 

  • Glazer AN (1982) Phycobilisomes: structure and dynamics. Ann Rev Microbiol 36: 173–198.

    Article  CAS  Google Scholar 

  • Glazer AN (1983) Comparative biochemistry of photosynthetic light-harvesting systems. Ann Rev Biochem 52: 125–157.

    Article  PubMed  CAS  Google Scholar 

  • Glazer AN (1984) Phycobilisome. A macromolecular complex optimized for light energy transfer. Biochim Biophys Acta 768: 29–51.

    Article  CAS  Google Scholar 

  • Glazer AN (1985) Light harvesting by phycobilisomes. Ann Rev Biophys Chem 14: 47–77.

    Article  CAS  Google Scholar 

  • Glazer AN (1987) Phycobilisomes: assembly and attachment In: P Fay and Van Baalen C (eds) The Cyanobacteria, pp 69–88. Elsevier, Amsterdam.

    Google Scholar 

  • Glazer AN (1988) Phycobilisomes. Meth Enzymol 167: 304–312.

    Article  CAS  Google Scholar 

  • Glazer AN (1989) Light guides. J Biol Chem 264: 1–4.

    PubMed  CAS  Google Scholar 

  • Glazer AN and Apell GS (1977) A common evolutionary origin for the biliproteins of cyanobacteria rhodophyta and cryptophyta. FEMS Lett 1: 113–116.

    Article  CAS  Google Scholar 

  • Glazer AN and Bryant DA (1975) Allophycocyanin B (λmax 671, 618 nm). A new cyanobacterial phycobiliprotein. Arch Microbiol 104: 15–22.

    Article  PubMed  CAS  Google Scholar 

  • Glazer AN and Hixson CS (1975) Characterization of R-Phycocyanin. Chromophore content of R-phycocyanin and C-phycoerythrin. J Biol Chem 25: 5487–5495.

    Google Scholar 

  • Glazer AN and Hixson CS (1977) Porphyridium cruentum B-phycoerythrin and b-phycoerythrin. J Biol Chem 252: 32–42.

    PubMed  CAS  Google Scholar 

  • Glazer AN, Williams RC, Yamanaka G and Schachman HK (1979) Characterization of cyanobacterial phycobilisomes in zwitterionic detergents. Proc Natl Acad Sci USA 76: 6162–6166.

    Article  PubMed  CAS  Google Scholar 

  • Glazer AN, West JA and Chan C (1982) Phycoerythrins as chemotaxonomic markers in red algae: A survey. Biochem Systematics Ecol 10: 203–215.

    Article  CAS  Google Scholar 

  • Glazer AN, Lundell DJ, Yamanaka G and Williams RC (1983) The structure of a’ simple’ phycobilisome. Ann Microbiol (Inst Pasteur) 134B: 159–180.

    Article  CAS  Google Scholar 

  • Glazer AN, Chan C, Williams RC, Yeh SW, and Clark JH (1985a) Kinetics of energy flow in the phycobilisome core. Science 230: 1051–1053.

    Article  PubMed  CAS  Google Scholar 

  • Glazer AN, Yeh SW, Webb SP and Clark JH (1985b) Disk to disk transfer as the rate-limiting step for energy flow in phycobiliproteins. Science 227: 419–423.

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk L, Fischer R, Lottspeich F and Scheer H (1991) Origin of the red shifted absorption in phycocyanin 632 from Mastigocladus laminosus. Photochem Photobiol 54: 283–288.

    Article  CAS  Google Scholar 

  • Gottschalk L, Lottspeich F and Scheer H (1993) Reconstitution of allophycocyanin from Mastigocladus laminosus with isolated linker polypeptide. Photochem Photobiol 58: 761–767.

    Article  CAS  Google Scholar 

  • Gottschalk L, Lottspeich F and Scheer H (1994) Reconstitution of allophycocyanin trimers of Mastigocladus laminosus containing the C-terminal 21-23 kDa domain of the core-membrane linker polypeptide LCM. Biochim Biophys Acta, submitted.

    Google Scholar 

  • Graham W, Sidler WA, Appert C, Frank G and Zuber H (1994) The allophycocyanin associated core-linker polypeptide Lc 13.5 of the red alga Porphyridium cruentum is not related to cyanobacterial allophycocyanin core linkers. Biol Chem Hoppe-Seyler, in press.

    Google Scholar 

  • Grossman AR (1990) Chromatic adaptation and the events involved in phycobilisome biosynthesis. Plant Cell Environment 13: 651–666.

    Article  CAS  Google Scholar 

  • Grossman AR, Talbott L, and Egelhoff T (1983) Biosynthesis of phycobilisome polypeptides of Porphyridium aerugineum and Cyanophora paradoxa. Carnegie Inst Washington Year Book 82: 112–116.

    Google Scholar 

  • Grossman AR, Lemaux PG and Conley PB (1986) Regulated synthesis of phycobilisome components. Photochem Photobiol 44: 827–837.

    Article  PubMed  CAS  Google Scholar 

  • Grossman AR, Lemaux PG, Conley PB, Bruns BU and Anderson LK (1988) Characterization of phycobiliprotein and linker polypeptide genes in Fremyella diplosiphon and their regulated expression during complementary chromatic adaptation. Photosynth Res 17: 23–56.

    Article  CAS  Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG, and Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57: 725–749.

    PubMed  CAS  Google Scholar 

  • Guard-Friar D, Eisenberg B, Edwards MR and MacColl R (1986) Immunochemistry on cryptomonad biliproteins. Plant Physiol 80: 38–42.

    Article  PubMed  CAS  Google Scholar 

  • Guglielmi G and Cohen-Bazire G (1984) Taxonomic study of a cyanobacterial genus belonging to Oscillatoriaceae: the genus Pseudanabaena Lauterborn. II. Molecular composition and structure of the phycobilisomes. Protistologica 20: 393–413.

    CAS  Google Scholar 

  • Guglielmi G, Cohen-Bazire G and Bryant DA (1981) The structure of Gloeobacter violaceus and its phycobilisomes. Arch Microbiol 129: 181–189.

    Article  CAS  Google Scholar 

  • Holzwarth AR (1991) Structure function relationships and energy transfer in phycobiliprotein antennae. Physiol Plant 83: 518–528.

    Article  CAS  Google Scholar 

  • Holzwarth AR, Wendler J and Suter GW (1987) Studies on chromophore coupling in isolated phycobiliproteins II. Picosecond energy transfer kinetics and time-resolved fluorescence spectra of a C-phycocyanin from Synechococcus 6301 as a function of the aggregation state. Biophys J 51: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Houmard J, Mazel D, Moguet C, Bryant DA and Tandeau de Marsac N (1986) Organization and nucleotide sequence of genes encoding core components of the phycobilisomes from Synechococcus sp. PCC 6301. Mol Gen Genet 205: 404–410.

    Article  PubMed  CAS  Google Scholar 

  • Houmard J, Capuano V, Coursin T and Tandeau de Marsac N (1988) Genes encoding core components of the phycobilisome in the cyanobacterium Calothrix sp. Strain PCC 7601: occurrence of a multigene family. J Bacteriol 170: 5512–5521.

    PubMed  CAS  Google Scholar 

  • Houmard J, Capuano V, Colombano MV, Coursin T and Tandeau de Marsac N (1990) Molecular characterization of the terminal energy acceptor of cyanobacterial phycobilisomes. Proc Natl Acad Sci USA 87: 2152–2156.

    Article  PubMed  CAS  Google Scholar 

  • Hucke M, Schweitzer G, Holzwarth AR, Sidler W and Zuber H (1993) Studies on chromophore coupling in isolated phycobiliproteins IV Femtosecond transient absorption study of ultrafast excited state dynamics in trimeric phyco-erythrocyanin complexes. Photochem Photobiol 57: 76–80.

    Article  CAS  Google Scholar 

  • Ingram K and Hiller RG (1983) Isolation and characterization of a major chlorophyll a/c 2 light-harvesting protein from a Chroomonas species (Cryptophyceae). Biochim Biophys Acta 722: 310–319.

    Article  CAS  Google Scholar 

  • Isono T and Katoh T (1987) Subparticles of Anabaena Phycobilisomes. Arch Biochem Biophys 256: 317–324.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins J, Hiller RG, Speirs J, Godovac-Zimmermann J (1990) A genomic clone encoding a cryptophyte phycoerythrin α-subunit. Evidence for three α-subunits and an N-terminal membrane transit sequence. FEBS Lett 273: 191–194.

    Article  PubMed  CAS  Google Scholar 

  • Johnson TR, Haynes JI, Wealand JL, Yarbrough LR and Hirschberg R (1988) Structure and regulation of genes encoding phycocyanin and allophycocyanin from Anabaena variabilis ATCC 29413. J Bacteriol 170: 1858–1865.

    PubMed  CAS  Google Scholar 

  • Jung J, Song PS, Paxton RJ, Edelstein MS, Swanson R and Hazen EE Jr (1980) Molecular topography of the photoreceptor from Chroomonas species. Biochemistry 19: 24–32.

    Article  PubMed  CAS  Google Scholar 

  • Kalla SR, Lind LK, Lidholm J and Gustafsson P (1988) Transcriptional organization of the phycocyanin subunit gene clusters of the cyanobacterium Anacystis nidulans UTEX 625. J Bacteriol 170: 2961–2970.

    PubMed  CAS  Google Scholar 

  • Kalla SR, Lind LK and Gustafsson P (1989) Genetic analysis of phycobilisome mutants in the cyanobacterium Synechococcus species PCC 6301. Mol Microbiol 3: 339–347.

    Article  PubMed  CAS  Google Scholar 

  • Klotz AV and Glazer AN (1985) Characterization of the bilin attachment sites in R-phycoerythrins. J Biol Chem 260: 4856–4863.

    PubMed  CAS  Google Scholar 

  • Klotz AV and Glazer AN (1987) γ-N-methylasparagine in phycobiliproteins. J Biol Chem 262: 17350–17355.

    PubMed  CAS  Google Scholar 

  • Klotz AV, Leary JA and Glazer AN (1986) Post-translational methylation of asparaginyl residues. Identification of β-71 γ-N-methylasparagine in allophycocyanin. J Biol Chem 261: 15891–15894.

    PubMed  CAS  Google Scholar 

  • Koller KP and Wehrmeyer W (1977) B-Phycoerythrin from Rhodeila violacea. Arch Microbiol 104: 255–261.

    Article  Google Scholar 

  • Koller KP, Wehrmeyer W and Schneider H (1977) Isolation and characterization of disc-shaped phycobilisomes from the red algae Rhodeila violacea. Arch Microbiol 112: 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Koller KP, Wehrmeyer W and Mörschel E (1978) Biliprotein assembly in the disc-shaped phycobilisomes of Rhodella violacea. Eur J Biochem 91: 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Kufer W, Hoenger A, Eberlein M, Mayer K, Buchner A and Gottschalk L (1992) Structure and molecular evolution of the gene cluster encoding proteins of the rod substructure of the phycobilisome from the cyanobacterium Mastigocladus laminosus. Unpublished sequences submitted to the EMBL Data Bank 7-July-1992; Accession No M75599.

    Google Scholar 

  • Kühlbrandt W and Wang DN (1991) Three-dimensional structure of plant light-harvesting complex determined by electron crystallography. Nature 350: 130–134.

    Article  PubMed  Google Scholar 

  • Lange W, Wilhelm C, Wehrmeyer W and Mörschel E (1990) Supramolecular structure of Photosystem II — phycobilisome-complexes of Porphyridium cruentum. Bot Acta 103: 250–257.

    Google Scholar 

  • Lau PCK, Condie A, Alvarado-Urbina G and Lau RH (1987a) Nucleotide sequence of phycocyanin β-subunit gene of cyanobacterium Anacystis nidulans strain R2. Nucl Acids Res 15: 2394–2394.

    Article  PubMed  CAS  Google Scholar 

  • Lau RH, Alvarado-Urbina G, and Lau PCK (1987b) Phycocyanin α-subunit gene of Anacystis nidulans R2: cloning, nucleotide sequencing and expression in Escherichia coli. Gene 52: 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Lemaux PG and Grossman AR (1984) Isolation and characterization of a gene for a major light-harvesting polypeptide form Cyanophora paradoxa. Proc Natl Acad Sci USA 81: 4100–4104.

    Article  PubMed  CAS  Google Scholar 

  • Lemaux PG and Grossman AR (1985) Major light-harvesting polypeptides encoded in polycistronic transcripts in a eukaryotic alga. EMBO J 4: 1911–1919.

    PubMed  CAS  Google Scholar 

  • Ley AC Butler WL Bryant DA and Glazer AN (1977) Isolation and function of allophycocyanin B of Porphyridium cruentum Plant Physiol 59: 974–980.

    CAS  Google Scholar 

  • Lind LK, Kalla SR, Lonneborg A, Öquist G and Gustafsson P (1987) Organization of the phycocyanin gene clusters in Anacystis nidulans. Acta Chem Scand B41: 112–115.

    Article  CAS  Google Scholar 

  • Lomax TL, Conley PB, Schilling J and Grossman AR (1987) Isolation and characterization of light-regulated phycobilisome linker polypeptide genes and their transcription as polycistronic mRNA. J Bacteriol 169: 2675–2684.

    PubMed  CAS  Google Scholar 

  • Ludwig M and Gibbs SP (1985) DNA is present in the nucleomorph of cryptomonads. Protoplasma 127: 9–20.

    Article  Google Scholar 

  • Lundell DJ and Glazer AN (1981) Allophycocyanin B: a common beta subunit in Synechococcus. Allophycocyanin B maximum wavelength 670 nanometers and allophycocyanin maximum wavelength 650 nanometers. J Biol Chem 256: 12600–12606.

    PubMed  CAS  Google Scholar 

  • Lundell DJ and Glazer AN (1983a) Molecular architecture of a light-harvesting antenna. Structure of the 18S core-rod subassembly of the Synechococcus 6301 phycobilisomes. J Biol Chem 258: 894–901.

    PubMed  CAS  Google Scholar 

  • Lundell DJ and Glazer AN (1983b) Molecular architecture of a light-harvesting antenna. Core substructure in Synechococcus 6301 phycobilisomes: two new allophycocyanin and allophycocyanin B complexes. J Biol Chem 258: 902–908.

    PubMed  CAS  Google Scholar 

  • Lundell DJ and Glazer AN (1983c) Molecular architecture of a light-harvesting antenna. Quaternary interactions in the Synechococcus 6301 phycobilisome core as revealed by partial tryptic digestion and circular dichroism studies. J Biol Chem 258: 8706–8713.

    Google Scholar 

  • Lundell DJ, Williams RC and Glazer AN (1981a) Molecular architecture of a light-harvesting antenna. In vitro assembly of the rod substructures of Synechococcus 6031 phycobilisomes. J Biol Chem 256: 3580–3592.

    PubMed  CAS  Google Scholar 

  • Lundell DJ, Yamanaka G and Glazer AN (1981b) A terminal energy acceptor of the phycobilisome: The 75′000-Dalton polypeptide of Synechococcus 6301 phycobilisome — A new biliprotein. J Cell Biol 91: 315–319.

    Article  PubMed  CAS  Google Scholar 

  • Lundell DJ, Glazer AN, DeLange RJ and Brown DM (1984) Bilin attachment sites in the α and β subunits of B-phycoerythrin. Amino acid sequence studies. J Biol Chem 259: 5472–5480.

    PubMed  CAS  Google Scholar 

  • MacColl R (1982) Phycobilisomes and Biliproteins. Photochem Photobiol 35: 899–904.

    Article  CAS  Google Scholar 

  • MacColl R and Guard-Friar D (1983) Phycocyanin 645. The chromophore assay of phycocyanin 645 from the cryptomonad protozoa Chroomonas species. J Biol Chem 258: 14327–14329.

    PubMed  CAS  Google Scholar 

  • MacColl R and Guard-Friar D (1987a) Cryptomonads In: Phycobiliproteins, pp 157–192. CRC Press, Boca Raton.

    Google Scholar 

  • MacColl R and Guard-Friar D (1987b) Phycobiliproteins. CRC Press, Boca Raton.

    Google Scholar 

  • MacColl R, Habig W and Berns DS (1973) Characterization of phycocyanin from Chroomonas species. J Biol Chem 248: 7080–7086.

    PubMed  CAS  Google Scholar 

  • MacColl R, O’Connor G, Crofton G and Csatorday K (1981) Phycoerythrocyanin: its spectroscopic behavior and its properties. Photochem Photobiol: 34: 719–723.

    CAS  Google Scholar 

  • MacColl R, Guard-Friar D, and Csatorday K (1983) Chromatographic and spectroscopic analysis of phycoerythrin 545 and its subunits. Arch Microbiol 135: 194–198.

    Article  CAS  Google Scholar 

  • Manodori A, Alhadeff M, Glazer AN and Melis A (1984) Photochemical apparatus organization in Synechococcus 6301 (Anacystis nidulans). Effect of phycobilisome mutation. Arch Microbiol 139: 117–123.

    Article  CAS  Google Scholar 

  • Manodori A, Alhadeff M, Glazer AN and Melis A (1985) Phycobilisome-Photosystem II association in Synechococcus 6301 (Cyanophyceae). FEBS Lett 181: 79–82.

    Article  CAS  Google Scholar 

  • Maruthi Sai PS, Siebzehnrübel S, Mahajan S and Scheer H (1992) Phycoerythrocyanin from Westiellopsis prolifica and Nostoc ruvilare: characterisation of the phycoviolobilin chromophore in both states. Photochem Photobiol 55: 119–124.

    Article  Google Scholar 

  • Maruthi Sai PS, Siebzehnriibel S, Mahajan S and Scheer H (1993) Fluorescence and circular dichroism studies on the phycoerythrocyanin from the cyanobacterium Westiellopsis prolifica. Photochem Photobiol 57: 71–75.

    Article  Google Scholar 

  • Maxson P, Sauer K, Zhou J, Bryant DA and Glazer AN (1989) Spectroscopic studies of cyanobacterial phycobilisomes lacking core polypeptides. Biochim Biophys Acta 977: 40–51.

    Article  PubMed  CAS  Google Scholar 

  • Mazel D and Marlière P (1989) Adaptive eradication of methionine and cysteine from cyanobacterial light-harvesting proteins. Nature 341: 245–248.

    Article  PubMed  CAS  Google Scholar 

  • Mazel D, Guglielmi G, Houmard J, Sidler W, Bryant DA and Tandeau de Marsac N (1986) Green light induces transcription of the phycoerythrin operon in the cyanobacterium Calothrix 7601. Nucl Acids Res 14: 8279–8290.

    Article  PubMed  CAS  Google Scholar 

  • Mazel D, Houmard J and Tandeau de Marsac N (1988) A multigene family in Calothrix sp. PCC 7601 encodes phycocyanin the major component of the cyanobacterial light-harvesting antenna. Mol Gen Genet 211: 296–304.

    Article  CAS  Google Scholar 

  • Michalowski CB, Bohnert HJ and Löffelhardt W (1990) A novel allophycocyanin gene (apcD) from Cyanophora paradoxa cyanelles. Nucl Acids Res 18: 2186.

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M and Gantt E (1986) A high molecular weight terminal pigment (‘anchor polypeptide’) and a minor blue polypeptide from phycobilisomes of the cyanobacterium Nostoc sp (MAC): isolation and characterization. Photosynth Res 10: 201–208.

    Article  CAS  Google Scholar 

  • Mimuro M, Füglistaller P, Riimbeli R and Zuber H (1986a) Functional assignment of chromophores and energy transfer in C-phycocyanin isolated from the thermophilic cyanobacterium Mastigocladus laminosus. Biochim Biophys Acta 848: 155–166.

    Article  CAS  Google Scholar 

  • Mimuro M, Rümbeli R, Füglistaller P and Zuber H (1986b) The microenvironment around the chromophores and its changes due to the association states in C-phycocyanin isolated from the cyanobacterium Mastigocladus laminosus. Biochim Biophys Acta 851: 447–456.

    Article  CAS  Google Scholar 

  • Minami Y, Yamada F, Hase T, Matsubara H, Murakami A, Fujita Y, Takao T, and Shimonishi Y (1985) Amino acid sequences of allophycocyanin α-and β-subunits isolated from Anabaena cylindrica. Presence of an unknown derivative of aspartic acid in the β-subunit. FEBS Lett 191: 216–220.

    Article  CAS  Google Scholar 

  • Molisch H (1894) Das Phycoerythrin seine Krystallisirbarkeit und chemische Natur. Flora Allg Botanische Zeitung Heft X: 177–191 (Tafel V).

    Google Scholar 

  • Molisch H (1895) Das Phycocyan ein krystallisierbarer Eiweisskörper. Flora Allg Botanische Zeitung Heft VI: 31–1352.

    Google Scholar 

  • Morisset W, Wehrmeyer W, Schirmer T and Bode W (1984) Crystallization and preliminary X-ray diffraction data of the cryptomonad biliprotein phycocyanin-645 from a Chroomonas spec. Arch Microbiol 140: 202–205.

    Article  CAS  Google Scholar 

  • Mörschel E (1982) Accessory polypeptides in phycobilisomes of red algae and cyanobacteria. Planta 154: 251–258.

    Article  Google Scholar 

  • Mörschel E and Mühlethaler K (1983) On the linkage of exoplasmatic freeze fracture particles to phycobilisomes. Planta 158: 451–457.

    Article  Google Scholar 

  • Mörschel E and Rhiel E (1987) Phycobilisomes and thylakoids: the light-harvesting system of cyanobacteria and red algae. In: Harris JR and Horne RW (eds) Membranous Structures, pp 210–254. Academic Press, London.

    Google Scholar 

  • Mörschel E and Wehrmeyer W (1975) Cryptomonad biliprotein: Phycocyanin-645 from a Chroomonas species. Arch Microbiol 105: 153–158.

    Article  PubMed  Google Scholar 

  • Mörschel E and Wehrmeyer W (1977) Multiple forms of phycoerythrin-545 from Cryptomonas maculata. Arch Microbiol 113: 83–89.

    Article  PubMed  Google Scholar 

  • Mörschel E, Koller KP, Wehrmeyer W and Schneider H (1977) Biliprotein assembly in the disc-shaped phycobilisomes of Rhodeila violacea I. Electron microscopy of phycobilisomes in situ and analysis of their architecture after isolation and negative staining. Cytobiologie 16: 118–129.

    Google Scholar 

  • Mörschel E, Wehrmeyer W and Koller KP (1980) Biliprotein assembly in the disc-shaped phycobilisomes of Rhodella violacea. Electron microscopical and biochemical analysis of B-phycoerythrin and B-phycoerythrin — C-phycocyanin aggregates. Eur J Cell Biol 21: 319–327.

    PubMed  Google Scholar 

  • Muckle G and Rüdiger W (1977) Chromophore content of C-phycoerythrin from various cyanobacteria. Z Naturforsch 32c: 957–962.

    CAS  Google Scholar 

  • Nagy JO, Bishop JE, Klotz AV, Glazer AN and Rapoport H (1984) Bilin attachment sites in the α, β and γ subunits of R-phycoerythrin. Structural studies on singly and doubly linked phycourobilins. J Biol Chem 260: 4864–4868.

    Google Scholar 

  • Nies M and Wehrmeyer W (1980) Isolation and biliprotein characterization of phycobilisomes from the thermophilic cyanobacterium Mastigocladus laminosus Cohn. Planta 150: 330–337.

    Article  CAS  Google Scholar 

  • Nies M and Wehrmeyer W (1981) Biliprotein assembly in the hemidiscoidal phycobilisomes of the thermophilic cyanobacterium Mastigocladus laminosus. Characterization of dissociation products with special reference to the peripheral phycoerythrocyanin phycocyanin complexes. Arch Microbiol 129: 374–379.

    Article  CAS  Google Scholar 

  • Offner GD and Troxler RF (1983) Primary structure of allophycocyanin from the unicellular rhodophyte Cyanidium caldarium. The complete amino acid sequence of the α and β subunits. J Biol Chem 258: 9931–9940.

    PubMed  CAS  Google Scholar 

  • Offner GD, Brown-Mason AS, Ehrhardt MM and Troxler RF (1981) Primary structure of phycocyanin from the unicellular rhodophyte Cyanidium caldarium 1. Complete amino-acid sequence of the alpha subunit. J Biol Chem 256: 12167–12175.

    PubMed  CAS  Google Scholar 

  • Ong LJ and Glazer AN (1987) R-phycocyanin II, a new phycocyanin occurring in marine Synechococcus species. Identification of the terminal energy acceptor bilin in phycocyanins. J Biol Chem 262: 6323–6327.

    PubMed  CAS  Google Scholar 

  • Ong LJ and Glazer AN (1988) Structural studies of phycobili-proteins in unicellular marine cyanobacteria. In: Stevens SE Jr and Bryant DA (eds) Light-Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models, pp 102–121. American Society of Plant Physiologists, Rockville, MD.

    Google Scholar 

  • Ong LJ and Glazer AN (1991) Phycoerythrins of marine unicellular cyanobacteria. I. Bilin types and location and energy transfer pathways in Synechococcus spp. phycoerythrins. J Biol Chem 262: 9515–9527.

    Google Scholar 

  • Ong L, Glazer AN and Waterbury JB (1984) An unusual phycoerythrin from a marine cyanobacterium. Science 224: 80–83.

    Article  PubMed  CAS  Google Scholar 

  • Pastore A and Lesk A M (1990) Comparison of the structures of globins and phycocyanins Evidence for evolutionary relationship. Proteins Struct Funct Genet 8: 133–155.

    Article  PubMed  CAS  Google Scholar 

  • Pilot TJ and Fox JL (1984) Cloning and sequencing of the genes encoding the α and β subunits of C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. Proc Natl Acad Sci USA 81: 6983–6987.

    Article  PubMed  CAS  Google Scholar 

  • Redlinger T and Gantt E (1981a) Identification of a 95′000 MW polypeptide common to both phycobilisomes and thylakoid membranes in Porphyridium cruentum. In: G Akoyunoglou (ed) Photosynthesis III Structure and Molecular Organisation of the Photosynthetic Apparatus. Vol. III, pp 257–262. Balaban Int Science Services, Philadelphia.

    Google Scholar 

  • Redlinger T and Gantt E (1981b) Phycobilisome structure of Porphyridium cruentum. Polypeptide composition. Plant Physiol 68: 1375–1379.

    Article  PubMed  CAS  Google Scholar 

  • Redlinger T and Gantt E (1982) A Mr 95,000 polypeptide in Porphyridium cruentum phycobilisomes and thylakoids: Possible function in linkage of phycobilisomes to thylakoids and in energy transfer. Proc Natl Acad Sci USA 79: 5542–5546.

    Article  PubMed  CAS  Google Scholar 

  • Reith M and Douglas S (1990) Localization of beta phycoerythrin to the thylakoid lumen of Cryptomonas Ф does not involve a signal peptide. Plant Mol Biol 15: 585–592.

    Article  PubMed  CAS  Google Scholar 

  • Reith M and Munholland J (1993) A high-resolution gene map of the chloroplast genome of the red alga, Porphyra purpurea. Plant Cell 5: 465–475.

    PubMed  CAS  Google Scholar 

  • Reuter W (1989) Spektrale strukturelle und biochemische Charakterisierung des Phycobilisomenzentrums und einiger Konstituenten der Phycobilisomenperipherie von Mastigo-cladus laminosus unter Berücksichtigung der Funktion. Ph. D. Dissertation, Philipps-Universität Marburg/Lahn BRD.

    Google Scholar 

  • Reuter W and Nickel-Reuter C (1993) Molecular assembly of the phycobilisomes from the cyanobacterium Mastigocladus laminosus. J Photochem Photobiol B: Biol 18: 51–66.

    Article  CAS  Google Scholar 

  • Reuter W and Wehrmeyer W (1988) Core substructure in Mastigocladus laminosus phycobilisomes: I Microhetero-geneity in two of three allophycocyanin core complexes. Arch Microbiol 150: 534–540.

    Article  CAS  Google Scholar 

  • Reuter W and Wehrmeyer W (1990) Core substructure in Mastigocladus laminosus phycobilisomes: II The central part of the tricylindrical core — APCM — contains the anchor polypeptide and no allophycocyanin B. Arch Microbiol 153: 111–117.

    Article  CAS  Google Scholar 

  • Reuter W, Nickel C and Wehrmeyer W (1990) Isolation of allophycocyanin B from Rhodeila violacea results in a model of the core from hemidiscoidal phycobilisomes of Rhodo-phyceae. FEBS Lett 273: 155–158.

    Article  PubMed  CAS  Google Scholar 

  • Rhiel E, Mörschel E and Wehrmeyer W (1987) Characterization and structural analysis of a chlorophyll a/c light harvesting complex and of Photosystem I particles isolated from thylakoid membranes of Cryptomonas maculata (Cryptophyceae). Eur J Cell Biol 43: 82–92.

    CAS  Google Scholar 

  • Rhiel E, Kunz J and Wehrmeyer W (1989) Immunocytochemical localization of phycoerythrin-545 and of a chlorophyll a/c light harvesting complex in Cryptomonas maculata (Cryptophyceae. Botanica Acta 102: 46–53.

    CAS  Google Scholar 

  • Riethman HC, Mawhinney TP and Sherman LA (1987) Phycobilisome-associated glycoproteins in the cyanobacterium Anacystis nidulans R2. FEBS Lett 215: 209–214.

    Article  PubMed  CAS  Google Scholar 

  • Riethman HC, Mawhinney TP and Sherman LA (1988) Characterization of phycobilisome glycoproteins in the cyanobacterium Anacystis nidulans R2. J Bacteriol 170: 2433–2440.

    PubMed  CAS  Google Scholar 

  • Rippka R and Herdman M (1985) Division patterns and cellular differentiation in cyanobacteria. Ann Microbiol (Inst Pasteur) 136A: 33–39.

    Article  CAS  Google Scholar 

  • Roell MK and Morse DE (1993) Organization, expression and nucleotide sequence of the operon encoding R-phycoerythrin α and β subunits from the red alga Polysiphonia boldii. Plant Mol Biol 21: 47–58.

    Article  PubMed  CAS  Google Scholar 

  • Rosinski J, Hainfeld JF, Rigbi M, and Siegelman HW (1981) Phycobilisome ultrastructure and chromatic adaptation in Fremyella diplosiphon. Ann Bot 47: 1–12.

    Google Scholar 

  • Rüdiger W (1975) Phycobiliproteide. Ber Deutsch Bot Ges 88: 125–139.

    Google Scholar 

  • Rüdiger W (1980) Plant Biliproteins In: FC Czygan (ed) Pigments in Plants 2nd ed, pp 314–351. G Fischer, Stuttgart.

    Google Scholar 

  • Rüdiger W (1994) Phycobiliproteins and phycobilins. Progress in Phycological Research, in press.

    Google Scholar 

  • Rüegsegger U, Sidler WA, Esteban A, Betz M and Zuber H (1993) Reconstitution of the rod-core complex (αβ)6 PCLRC 29.5 (αβ)3 APCLC 8.9 using the overexpressed rod-core linker polypeptide LRC 29.5 from the cyanobacterium Mastigocladus laminosus. Eur J Biochem, submitted.

    Google Scholar 

  • Rümbeli R and H Zuber (1988) Isolation and characterization of the components of the phycobilisome from Mastigocladus laminosus and crosslinking experiments In: Scheer H and Schneider S (ed) Photosynthetic Light-Harvesting Systems, pp 61–70. Walter de Gruyter, Berlin.

    Google Scholar 

  • Rümbeli R, Schirmer T, Bode W, Sidler W and Zuber H (1985) Crystallization of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus and preliminary characterization of two crystal forms. J Mol Biol 186: 197–200.

    Article  PubMed  Google Scholar 

  • Rümbeli R, Wirth M, Suter F and Zuber H (1987a) The phycobiliprotein β16.2 of the allophycocyanin core from the cyanobacterium Mastigocladus laminosus. Characterization and complete amino acid sequence. Biol Chem Hoppe-Seyler 368: 1–9.

    Article  PubMed  Google Scholar 

  • Rümbeli R, Suter F, Wirth M, Sidler W and Zuber H (1987b) Isolation and localization of N4-γ-methylasparagine in phycobiliproteins from the cyanobacterium Mastigocladus laminosus. Biol Chem Hoppe-Seyler 368: 1401–1406.

    Article  PubMed  Google Scholar 

  • Rümbeli R, Suter F, Wirth M, Sidler W and Zuber H (1987c) γ-N-Methylasparagine in phycobiliproteins from the cyano-bacteria Mastigocladus laminosus and Calothrix. FEBS Lett 221: 1–2.

    Article  Google Scholar 

  • Rümbeli R, Frank G, Wirth M and Zuber H (1988) Isolation and partial amino acid sequences of the 89 kDa-anchor polypeptide of phycobilisomes from Mastigocladus laminosus. Experientia 44: A60.

    Article  Google Scholar 

  • Sandström Å, Gillbro T, Sundström V, Wendler J and Holzwarth AR (1988a) Picosecond study of energy transfer within 18-S particles of AN 112 (a mutant of Synechococcus 6301) phycobilisomes. Biochim Biophys Acta 933: 54–64.

    Article  Google Scholar 

  • Sandström Å, Gillbro T, Sundström V, Fischer R and Holzwarth AR (1988b) Picosecond time-resolved energy transfer within C-phycocyanin aggregates of Mastigocladus laminosus. Biochim Biophys Acta 933: 42–53.

    Article  Google Scholar 

  • Sauer K and Scheer H (1988) Excitation transfer in C-phycocyanin. Förster transfer rate and exciton calculations based on new crystal structure data for C-phycocyanins for Agmenellum quadruplicatum and Mastigocladus laminosus. Biochim Biophys Acta 936: 157–170.

    Article  CAS  Google Scholar 

  • Scharnagel C and Fischer S (1993) Reversible photochemistry in the α-subunit of phycoerythrocyanin: characterization of chromophore and protein by molecular dynamics and quantum chemical calculations. Photochem Photobiol 57: 63–70.

    Article  Google Scholar 

  • Scheer H (1981) Biliproteine. Angew Chem 93: 230–250.

    Article  CAS  Google Scholar 

  • Scheer H (1982) Phycobiliproteins: molecular aspects of photosynthetic antenna system In: FK Fong (ed) Light Reaction Path of Photosynthesis. Mol Biol Biochem Biophys 35: 7–45.

    Google Scholar 

  • Scheer H (1986) Excitation transfer in phycobiliproteins In: Staehelin LA and Arntzen CJ (eds) Photosynthesis III. Encyclopedia of Plant Physiology New Series, Vol 19, pp 336–372. Springer-Verlag, Berlin.

    Google Scholar 

  • Schirmer T and Vincent M (1987) Polarized absorption and fluorescence spectra of single crystals of C-phycocyanin. Biochim Biophys Acta 893: 379–385.

    Article  CAS  Google Scholar 

  • Schirmer T, Bode W, Huber R, Sidler W and Zuber H (1985) X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J Mol Biol 184: 257–277.

    Article  PubMed  CAS  Google Scholar 

  • Schirmer T, Huber R, Schneider M, Bode W, Miller M and Hackert ML (1986) Crystal structure analysis and refinement at 2.5 Å of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The molecular model and its implications for light-harvesting. J Mol Biol 188: 651–676.

    Article  PubMed  CAS  Google Scholar 

  • Schirmer T, Bode W and Huber R (1987) Refined three-dimensional structures of two cyanobacterial C-phycocyanins at 2.1 and 2.5 Å resolution. A common principle of phycobilin-protein interaction. J Mol Biol 196: 677–695.

    Article  PubMed  CAS  Google Scholar 

  • Schluchter WM and Bryant DA (1992) Molecular characterization offerredoxin-NADP+oxidoreductase in cyanobacteria: Cloning and sequence of the petH gene of Synechococcus sp PCC 7002 and studies on the gene product. Biochemistry 31: 3092–3102.

    Article  PubMed  CAS  Google Scholar 

  • Schoenleber RW, Lundell DJ, Glazer AN and Rapoport H (1984) Bilin attachment sites in the α and β subunits of B-phycoerythrin. Structural studies on the singly linked phycoerythrobilins. J Biol Chem 259: 5481–5484.

    PubMed  CAS  Google Scholar 

  • Sharkov AV, Kryukov IV, Khoroshilov EV, Kryukov PG, Fischer R, Scheer H and Gillbro T (1992) Femtoseconds energy transfer between chromophores in allophycocyanin trimers. Chem Phys Lett 191: 633–638.

    Article  CAS  Google Scholar 

  • Sidler W and Zuber H (1988) Structural and phylogenetic relationship of phycoerythrins from cyanobacteria red algae and Cryptophyceae In: Scheer H and Schneider S (eds) Photosynthetic Light-Harvesting Systems, pp 49–60. Walter de Gruyter, Berlin.

    Google Scholar 

  • Sidler W, Gysi J, Isker E and Zuber H (1981a) The complete amino acid sequence of both subunits of allophycocyanin: a light harvesting protein-pigment complex from the cyanobacterium Mastigocladus laminosus. Hoppe Seyler’s Z Physiol Chem 362: 611–628.

    Article  PubMed  CAS  Google Scholar 

  • Sidler W, Füglistaller P, Gysi J, Isker E and Zuber H (1981b) The complete amino acid sequence of allophycocyanin from the cyanobacterium Mastigocladus laminosus (genus Fischerella) secondary structure predictions and comparison with C-phycocyanin and with fragments of C-phycoerythrin and phycoerythrocyanin. In: G Akoyunoglou (ed) Photosynthesis III. Structure and Molecular Organisation of the Photosynthetic Apparatus, pp 583–594. Balaban Int Science Services, Philadelphia.

    Google Scholar 

  • Sidler W, Kumpf B, Suter F, Morisset W, Wehrmeyer W and Zuber H (1985) Structural studies on cryptomonad biliprotein subunits. Two different α-subunits in Chroomonas phyco-cyanin-645 and Cryptomonas phycoerythrin-545. Biol Chem Hoppe-Seyler 366: 233–244.

    Article  PubMed  CAS  Google Scholar 

  • Sidler W, Kumpf B, Rüdiger W and Zuber H (1986) The complete amino-acid sequence of C-phycoerythrin from the cyanobacterium Fremyella diplosiphon. Biol Chem Hoppe-Seyler 367: 627–642.

    Article  PubMed  CAS  Google Scholar 

  • Sidler W, Nutt H, Kumpf B and Zuber H (1987) Structural principles of cryptomonad biliproteins and cyanobacterial phycobiliproteins In: Biggins J (ed) Progress in Photosynthesis Research, Vol II, pp 153–156. Martinus-Nijhoff, Dordrecht.

    Chapter  Google Scholar 

  • Sidler W, Frank G, Wehrmeyer W and Zuber H (1988) Structural studies on chlorophyll a/c light harvesting complex from the cryptomonad Cryptomonas maculata: Partial amino acid sequences. Experientia 44: A60.

    Article  Google Scholar 

  • Sidler W, Kumpf B, Suter F, Klotz AV, Glazer AN and Zuber H (1989) The complete amino-acid sequence of the α and β subunits of B-phycoerythrin from the rhodophytan alga Porphyridium cruentum. Biol Chem Hoppe-Seyler 370: 115–124.

    Article  PubMed  CAS  Google Scholar 

  • Sidler W, Nutt H, Kumpf B, Frank G, Suter F, Brenzel A, Wehrmeyer W and Zuber H (1990a) The complete amino acid sequence and the phylogenetic origin of phycocyanin-645 from the cryptophytan alga Chroomonas sp. Biol Chem Hoppe-Seyler 371: 537–547.

    Article  PubMed  CAS  Google Scholar 

  • Sidler W, Suter F, Israels R and Zuber H (1990b) Studies on the phycobiliprotein complexes from the red alga Porphyridium cruentum. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol II, pp 497–500. Kluwer, Dordrecht.

    Google Scholar 

  • Sidler W, Rüegsegger U and Zuber H (1993) Overexpression of LRC 29.5 linker polypeptide from M. laminosus and reconstitution of the rod-core complex (αβ)6 PCLRC 29.5 (αβ)3 APCLc 8.9. Experientia 49: A33/189.

    Google Scholar 

  • Siebzehnrübel S, Fischer R and Scheer H (1987) Chromophore assignment in C-phycocyanin from Mastigocladus laminosus Z. Naturforsch. 42c: 258–262.

    Google Scholar 

  • Siebzehnrübel S, Fischer R, Kufer W and Scheer H (1989) Photochemistry of phycobiliproteins: reciprocity of reversible photochemistry and aggregation in phycoerythrocyanin from Mastigocladus laminosus. Photochem Photobiol 49: 753–761.

    Article  Google Scholar 

  • Staehelin LA (1986) Chloroplast structure and supramolecular organization of photosynthetic membranes In: Staehelin LA and Arntzen CJ (eds) Photosynthesis III. Encyclopedia of Plant Physiology New Series, Vol 19, pp 1–84. Springer-Verlag, Berlin.

    Google Scholar 

  • Staehelin LA, Giddings TH, Badami P and Krzymowski WW (1978) In: Deamer DW (ed) Light Transducing Membranes: Structure, Function and Evolution, pp 335–355. Academic Press, New York.

    Google Scholar 

  • Staehelin LA, Golecki JR and Drews G (1980) Supramolecular organisation of chlorosomes (Chlorobium vesicles) and their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta 589: 30–45.

    Article  PubMed  CAS  Google Scholar 

  • Stanier RY (1977) The position of cyanobacteria in the world of phototrophs. Carlsberg Res Commun 42: 77–98.

    Article  CAS  Google Scholar 

  • Stanier RY and Cohen-Bazire G (1977) Phototrophic prokaryotes: The cyanobacteria. Annu Rev Microbiol 31: 225–274.

    Article  PubMed  CAS  Google Scholar 

  • Stevens SE Jr and Bryant DA (1988) Light-Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models. American Society of Plant Physiologists, Rockville MD.

    Google Scholar 

  • Su X, Fraenkel PG and Bogorad L (1992) Excitation energy transfer from phycocyanin to chlorophyll in an apcA deficient mutant of Synechocystis sp. PCC 6803. J Biol Chem 267: 22944–22950.

    PubMed  CAS  Google Scholar 

  • Suter F, Füglistaller P, Lundell DJ, Glazer AN and Zuber H (1987) Amino acid sequences of alpha-allophycocyanin B from Synechococcus 6301 and Mastigocladus laminosus. FEBS Lett 217: 279–282.

    Article  CAS  Google Scholar 

  • Suter GW and Holzwarth AR (1987) A kinetic model for the energy transfer in phycobilisomers. Biophys J 52: 673–683.

    Article  PubMed  CAS  Google Scholar 

  • Swanson RV and Glazer AN (1990a) Phycobiliprotein methylation Effect of γ-N-methylasparagine residue on energy transfer in phycocyanin and the phycobilisome. J Mol Biol 214: 787–796.

    Article  PubMed  CAS  Google Scholar 

  • Swanson RV and Glazer AN (1990b) Separation of phycobiliprotein subunits by reverse-phase high pressure chromatography. Analyt Biochem 188: 295–299.

    Article  PubMed  CAS  Google Scholar 

  • Swanson RV, Ong LJ, Wilbanks SM and Glazer AN (1991) Phycoerythrins of marine unicellular cyanobacteria. II. Characterization of phycobiliproteins with unusually high phycourobilin content. J Biol Chem 266: 9528–9534.

    PubMed  CAS  Google Scholar 

  • Swanson RV, de Lorimier R and Glazer AN (1992a) Genes encoding the phycobilisome rod substructures are clustered on the Anabaena chromosome. Characterization of the phycoerythrocyanin operon. J Bacteriol 174: 2640–2647.

    PubMed  CAS  Google Scholar 

  • Swanson RV, Zhou J, Leary JA, Williams T, de Lorimier R, Bryant DA and Glazer AN (1992b) Characterization of phycocyanin produced by cpcE and cpcF mutants and identification of an intergenic suppressor of the defect in bilin attachment. J Biol Chem 267: 16146–16154.

    PubMed  CAS  Google Scholar 

  • Sweet RM, Fuchs HE, Fisher RG and Glazer AN (1977) Preliminary crystallographic investigations of two phycobiliproteins. J Biol Chem 252: 8258–8260.

    PubMed  CAS  Google Scholar 

  • Tandeau de Marsac N (1977) Occurrence and nature of chromatic adaptation in cyanobacteria. J Bacteriol 130: 82–91.

    PubMed  CAS  Google Scholar 

  • Tandeau de Marsac N (1983) Phycobilisomes and complementary chromatic adaptation in cyanobacteria. Bull Inst Pasteur 81: 201–254.

    CAS  Google Scholar 

  • Tandeau de Marsac N (1991) Chromatic adaptation by cyanobacteria In: Bogorad L and Vasil IK (eds) Cell Culture and Somatic Cell Genetics of Plants, Vol 7B. The Photosynthetic Apparatus: Molecular Biology and Operation, pp 419–446. Academic Press, New York.

    Google Scholar 

  • Tandeau de Marsac N and Cohen-Bazire G (1977) Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci USA 74: 1635–1639.

    Article  Google Scholar 

  • Tandeau de Marsac N and Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Rev 104: 119–190.

    Article  CAS  Google Scholar 

  • Tandeau de Marsac N, Mazel D, Damerval T, Guglielmi G, Capuano V and Houmard J (1988) Photoregulation of gene expression in the filamentous cyanobacterium Calothrix sp PCC 7601: Light-harvesting complexes and cell differentiation. Photosynth Res 18: 99–132.

    Article  Google Scholar 

  • Tandeau de Marsac N, Mazel D, Capuano V, Damerval T and Houmard J (1990) Genetic analysis of the cyanobacterial light-harvesting antenna complex In: Drews G (ed) The Molecular Biology of Membrane-bound Complexes in Phototrophic Bacteria, pp 143–153. Plenum, New York.

    Google Scholar 

  • Thornber JP (1986) Biochemical characterization and structure of pigment-proteins of photosynthetic organisms. In: Staehelin LA and Arntzen CJ (eds) Photosynthesis III. Encyclopedia of Plant Physiology New Series, Vol 19, pp 98–142. Springer-Verlag, Berlin.

    Google Scholar 

  • Thornber JP, Peter GF, Chitnis PR, Nechushtai R and Vainstein A (1988) In: Stevens SE Jr and Bryant DA (eds) Light-Energy Transduction in Photosynthesis: Higher Plants and Bacterial Models, pp 137–154. American Society of Plant Physiologists, Rockville.

    Google Scholar 

  • Tomas RN and Cox ER (1973) Observation on the symbiosis of Peridinium balticum and its intracellular alga I. Ultrastructure. J Phycol 9: 304–323.

    Google Scholar 

  • Troxler RF, Ehrhardt MM, Brown-Mason AS and Offner GD (1981) Primary structure of phycocyanin from the unicellular rhodophyte Cyanidium caldarium. Complete amino acid sequence of the β-subunit. J Biol Chem 256: 12176–12184.

    PubMed  CAS  Google Scholar 

  • Valentin K, Maid U, Emich A and Zetsche K (1992) Organization and expression of a phycobiliprotein gene cluster from the unicellular red alga Cyanidium caldarium. Plant Mol Biol 20: 267–276.

    Article  PubMed  CAS  Google Scholar 

  • Walsh RG, Wingfield P, Glazer AN and Delange RJ (1980) Ami no-acid sequence of C-phycocyanin alpha subunit from Synechococcus 6301 (Anacystis nidulans) Fed Proc 39: 1998.

    Google Scholar 

  • Watson BA, Waarland SD and Waarland JR (1986) Phycocyanin from the red alga Anotrichium tenue. Modification of properties by a colorless polypeptide molecular weight 30000. Biochemistry 25: 4583–4587.

    Article  CAS  Google Scholar 

  • Wedemayer GJ, Wemmer DE and Glazer AN (1991) Phycobilins of cryptophycean algae. Structures of novel bilins with acryloyl substituents from phycoerythrin 566. J Biol Chem 266: 4731–4741.

    PubMed  CAS  Google Scholar 

  • Wedemayer GJ, Kidd DG, Wemmer DE and Glazer AN (1992) Phycobilins of cryptophycean algae. Occurrence of dihydro-biliverdin and mesobiliverdin in cryptomonad biliproteins. J Biol Chem 267: 7315–7331.

    PubMed  CAS  Google Scholar 

  • Wehrmeyer W (1970) Zur Feinstruktur der Chloroplasten einiger photoautotropher Cryptophyceen. Arch Mikrobiol 71: 367–383.

    Article  Google Scholar 

  • Wehrmeyer W (1983a) Organization and composition of cyanobacterial and rhodophycean phycobilisomes In: Papageorgiou GC and Packer L (eds) Photosynthetic Prokaryotes: Cell Differentiation and function, pp 1–22. Elsevier Biomedical, New York.

    Google Scholar 

  • Wehrmeyer W (1983b) Phycobiliproteins and phycobiliprotein organization in the photosynthetic apparatus of cyanobacteria red algae and cryptophytes In: Jensen U and Fairbrothers DE (eds) Proteins and Nucleic Acids in Plant Systematics, pp 143–167. Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Wehrmeyer W (1990) Phycobilisomes: Structure and function In: Wiesser W, Robinson DG and Starr RC (eds) Experimental Phycology: Cell Walls and Surfaces, Reproduction, Photosynthesis, Vol 1, pp 158–172. Springer Verlag, Heidelberg.

    Chapter  Google Scholar 

  • Wehrmeyer W, Zimmermann C, Ohki K and Yoshihiko F (1988) On a new type of cyanobacterial phycobilisome exemplified in Phormidium persicinum Gomont. Eur J Cell Biol 46: 539–546.

    Google Scholar 

  • Westermann M, Reuter W, Schimek C and Wehrmeyer W (1993) Presence of both hemidiscoidal and hemiellipsoidal phycobilisomes in a Phormidium species (Cyanobacteria). Z Naturforsch 48c: 28–34.

    Google Scholar 

  • Wilbanks SM and Glazer AN (1993a) Rod-structure of a phycoerythrin II-containing phycobilisome I. Organization and sequence of the gene cluster encoding the major phycobiliprotein rod components in the genome of marine Synechococcus sp. WH8020. J Biol Chem 268: 1226–1235.

    PubMed  CAS  Google Scholar 

  • Wilbanks SM and Glazer AN (1993b) Rod-structure of a phycoerythrin II-containing phycobilisome. II. Complete sequence and bilin attachment site of a phycoerythrin gamma subunit. J Biol Chem 268: 1236–1241.

    PubMed  CAS  Google Scholar 

  • Wilbanks SM, Wedemayer GJ and Glazer AN (1989) Posttranslational modification of the β subunit of a cryptomonad phycoerythrin. Sites of bilin attachment and asparagine methylation. J Biol Chem 264: 17860–17867.

    PubMed  CAS  Google Scholar 

  • Wilbanks SM, de Lorimer R and Glazer AN (1991) Phycoerythrins of marine unicellular cyanobacteria. III. Sequence of a class II phycoerythrin. J Biol Chem 266: 9535–9539.

    PubMed  CAS  Google Scholar 

  • Wilcox LW and Wedemayer GJ (1984) Gymnodinium acidotum Nygaard (Pyrrophyta) a dinoflagellate with an endosymbiotic cryptomonad. J Phycol 20: 236–2423.

    Article  Google Scholar 

  • Williams VP and Glazer AN (1978) Structural studies on phycobiliproteins. I. Bilin-containing peptides of C-phycocyanin. J Biol Chem 253: 202–211.

    PubMed  CAS  Google Scholar 

  • Wilson WH, Newman J, Mann NH and Carr NG (1991) Cloning and sequence analysis of the phycocyanin genes of the marine cyanobacterium Synechococcus sp. WH 7803. Plant Mol Biol 17: 931–933.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe GR, Cunningham FX Jr and Gantt E (1992) In the red alga Porphyridium cruentum Photosystem I is associated with a putative LHC complex. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 315–318. Kluwer, Dordrecht.

    Google Scholar 

  • Yamanaka G Lundell DJ and Glazer AN (1982) Molecular architecture of a light-harvesting antenna. Isolation and characterization of phycobilisome subassembly particles. J Biol Chem 257: 4077–4086.

    PubMed  CAS  Google Scholar 

  • Yamazaki I, Mimuro M, Murao T, Yamazaki, T Yoshihara K and Fujita Y (1984) Excitation energy transfer in the light harvesting antenna system of the red alga Porphyridium cruentum and the blue-green alga Anacystis nidulans. Analysis of time resolved fluorescence spectra. Photochem Photobiol 39: 233–240.

    Article  CAS  Google Scholar 

  • Yu MH and Glazer AN (1982) Cyanobacterial phycobilisomes Role of the linker polypeptides in the assembly of phycocyanin. J Biol Chem 257: 3429–3433.

    PubMed  CAS  Google Scholar 

  • Yu MH, Glazer AN and Williams RC (1981a) Cyanobacterial phycobilisomes. Phycocyanin assembly in the rod substructure of Anabaena variabilis phycobilisomes. J Biol Chem 256: 13130–13136.

    PubMed  CAS  Google Scholar 

  • Yu MH, Glazer AN, Spencer KG and West J (1981b) Phycoerythrins of the red alga Callithamnion. Variation in phycoerythrobilin and phycourobilin content. Plant Physiol 68: 482–488.

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Zhou J and Bryant DA (1992) Energy transfer processes in phycobilisomes as deduced from analyses of mutants of Synechococcus sp PCC 7002 In: Murata N (ed) Research in Photosynthesis, Vol I, pp 25–32. Kluwer, Dordrecht.

    Google Scholar 

  • Zhou J, Gasparich GE, Stirewalt VL, de Lorimier R and Bryant DA (1992) The cpcE and cpcF genes of Synechococcus sp. PCC 7002: construction and phenotypic characterization of interposon mutants. J Biol Chem 267: 16138–16145.

    PubMed  CAS  Google Scholar 

  • Zilinskas BA and Greenwald LS (1986) Phycobilisome structure and function. Photosynth Res 10: 7–35.

    Article  CAS  Google Scholar 

  • Zilinskas BA and Howell DA (1983) Role of the colorless polypeptides in phycobilisome assembly in Nostoc sp. Plant Physiol 71: 379–387.

    Article  PubMed  CAS  Google Scholar 

  • Zilinskas BA and Howell DA (1987) Comparative immunology conserved of the phycobilisome linker polypeptides. In: Biggins J (ed) Progress in Photosynthesis Research, Vol II, pp 161–164. Martinus-Nijhoff, Dordrecht.

    Chapter  Google Scholar 

  • Zuber H (1978) Studies on the structure of the light-harvesting pigment-protein-complexes from cyanobacteria and red algae. Ber Deutsch Bot Ges 91: 459–475.

    CAS  Google Scholar 

  • Zuber H (1983) Structure and function of the light-harvesting phycobiliproteins from the cyanobacterium Mastigocladus laminosus. In: Papageorgiou GC and Packer L (eds) Photosynthetic Prokaryotes: Cell Differentiation and function, pp 23–42. Elsevier Biomedical, New York.

    Google Scholar 

  • Zuber H (1985) Structure and function of light-harvesting complexes and their polypeptides. Photochem Photobiol 42: 821–844.

    Article  CAS  Google Scholar 

  • Zuber H (1986) Structure of light-harvesting antenna complexes of photosynthetic bacteria and red algae. Trends Biochem Sci 11: 414–419.

    Article  CAS  Google Scholar 

  • Zuber H (1987) The structure of light-harvesting pigment-protein complexes. In: Barber J (ed) The Light Reactions, pp 157–259. Elsevier Biomedical, Amsterdam.

    Google Scholar 

  • Zuber H (1988) Structural studies on the antenna complexes and polypeptides of Chloroflexus aurantiacus and other green photosynthetic bacteria In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic bacteria, pp 53–55. Plenum Press, New York.

    Chapter  Google Scholar 

  • Zuber H and Brunisholz R A (1991) Structure and function of antenna polypeptides and chlorophyll-protein complexes: principles and variability In: Scheer H (ed) Chlorophylls, pp 627–703. CRC Press, Boca Raton.

    Google Scholar 

  • Zuber H, Sidler W, Füglistaller P, Brunisholz R and Theiler R (1985) Structural studies on the light-harvesting polypeptides from cyanobacteria and bacteria. In: Steinback KE, Bonitz S, Arntzen CJ, and Bogorad L (eds) Molecular Biology of the Photosynthetic Apparatus, pp 183–195. Cold Spring Laboratory Publications, Cold Spring Harbor, NY.

    Google Scholar 

  • Zuber H, Brunisholz R and Sidler W (1987) Structure and function of light-harvesting pigment-protein complexes. In: Amesz J (ed) Photosynthesis (New Comprehensive Biochemistry, Vol 15), pp 233–271. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sidler, W.A. (1994). Phycobilisome and Phycobiliprotein Structures. In: Bryant, D.A. (eds) The Molecular Biology of Cyanobacteria. Advances in Photosynthesis, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0227-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0227-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3273-2

  • Online ISBN: 978-94-011-0227-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics