Skip to main content

Advertisement

Log in

Erythrocyte Protoporphyrin Fluorescence as a Biomarker to Monitor the Anticancer Effect of Semecarpus Anacardium in DMBA Induced Mammary Carcinoma Rat Model

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Endogenous fluorescence has been proposed as a means of aiding the diagnosis of various malignancies. It has been suggested that erythrocytes may be the carriers of fluorophors that accumulate in cancer tissue and may be useful in the diagnosis and treatment of malignancies. Hence, the present study was designed to explore the spectrofluorimetric analysis of blood components as a marker for the analysis of mammary carcinoma treatment and also to bring about the protective effect of the drug Semecarpus anacardium on oxidative stress mediated damage of erythrocytes. Fluorescence spectra of the blood components were studied and also the level of lipid per oxides and antioxidant enzymes status in erythrocytes were determined in DMBA induced mammary carcinoma rats treated with Semecarpus anacardium Linn nut milk extract. Fluorescence emission spectroscopy of blood components are altered under cancer conditions and the drug effectively ameliorated these alterations in mammary carcinoma induced rats. The drug also effectively reduced the oxidative stress induced erythrocyte damage thereby restoring the erythrocytes antioxidant status. These results suggest that erythrocytes may be the carriers of fluorophors that accumulate in cancer tissue and hence acts as new biomarkers for the diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferlay JBF, Pisani P, Parkin DM (2001) GLOBOCAN 2000: cancer incidence, mortality and prevalence worldwide, Version 1.0

  2. Ferlay JSH, Bray F, Forman D, Mathers C, Parkin DM (2010) GLOBOCAN 2008 v1.2, Cancer incidence and + mortality worldwide: IARC cancer base no. 10

  3. Agarwal G, Ramakant P (2008) Breast cancer care in India: the current scenario and the challenges for the future. Breast Care (Basel) 3:21–27

    Article  Google Scholar 

  4. Agarwal G, Ramakant P, Forgach ER, Rendon JC, Chapparo JM, Basurto CS, Margaritoni M (2009) Breast cancer care in developing countries. World J Surg 33:2069–2076

    Article  PubMed  Google Scholar 

  5. Li DH, Wang MY, Dhingra K, Hittelman WN (1996) Aromatic DNA adducts in adjacent tissues of breast cancer patients: clues to breast cancer etiology. Cancer Res 56:287–293

    CAS  PubMed  Google Scholar 

  6. Surveswaran S, Cai Y-Z, Corke H, Sun M (2007) Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem 102:938–953

    Article  CAS  Google Scholar 

  7. Aravind SG, Arimboor R, Rangan M, Madhavan SN, Arumughan C (2008) Semi-preparative HPLC preparation and HPTLC quantification of tetrahydroamentoflavone as marker in Semecarpus anacardium and its polyherbal formulations. J Pharm Biomed Anal 48:808–813

    Article  CAS  PubMed  Google Scholar 

  8. Shin YG, Cordell GA, Dong Y, Pezzuto JM, Appa Rao AVN, Ramesh M, Ravi Kumar B, Radhakishan M (1999) Rapid identification of cytotoxic alkenyl catechols in Semecarpus anacardium using bioassay-linked high performance liquid chromatographyelectrospray/ mass spectrometric analysis. Phytochem Anal 10:208–212

    Article  CAS  Google Scholar 

  9. Nair PKR, Melnick SJ, Wnuk SF, Rapp M, Escalon E, Ramachandran C (2009) Isolation and characterization of an anticancer catechol compound from Semecarpus anacardium. J Ethnopharmacol 122:450–456

    Article  CAS  PubMed  Google Scholar 

  10. Khan HBH, Vinayagam KS, Ashwini S, Palanivelu S, Panchanadham S (2011) Anti diabetic and antioxidant effect of Semecarpus anacardium in a high fat diet STZ induced Type 2 diabetic rat model. J Diet Suppl 1–5

  11. Vinayagam KS, Khan HBH, Palanivelu S, Panchanadham S (2012) Hypolipidemic effect of Semecarpus anacardium Linn nut milk extract in high cholesterol fed hypercholesterolemic rats. Chin J Integr Med. doi:10.1007/s11655-012-1252-2

    PubMed  Google Scholar 

  12. Subramaniam S, Khan HBH, Palanivelu S, Panchanadham S (2014) Antihyperlipidemic and antiinflammatory effect of Bhallataka nuts in ameliorating the alterations in lipid metabolsim and inflammation in diabetes induced cardiac damage in rats. Comp Clin Pathol. doi:10.1007/s00580-013-1828-z

    Google Scholar 

  13. Khan HBH, Vinayagam KS, Madan P, Palanivelu S, Panchanadham S (2012) Modulatory effect of Semecarpus anacardium against oxidative damages in DMBA induced mammary carcionogenesis rat model. Comp Clin Pathol 21(6):1275–1284

    Article  Google Scholar 

  14. Dhanasekaran SM, Jaganathan R, Panchanadham S, Palanivelu S (2012) Induction of mitochondrial mediated apoptosis by Semecarpus anacardium in the BCR-ABL+ 12B1 leukemia cell line – a possible mechanism of therapeutic action in vivo. J Exp Clin Med 4(1):30–38

    Article  CAS  Google Scholar 

  15. Mahadevan A, Mitchell MF, Silva E, Thomsen S, Richards-Kortum R (1993) Study of fluorescence properties of normal and neoplastic human cervical tissue. Lasers Surg Med 13:647–655

    Article  CAS  PubMed  Google Scholar 

  16. Ganesan S, Sacks PG, Yang Y, Katz A, Al-Rawi M, Schantz SP, Alfano RR (1998) Native fluorescence spectroscopy of normal and malignant epithelial cells. Cancer Biochem Biophys 16:365–373

    CAS  PubMed  Google Scholar 

  17. Alfano RR, Tata DB, Cordero J, Tomashefsky P, Longo FW, Alfano MA (1984) Laser induced fluorescence spectroscopy from native cancerous and normal tissues. IEEE J Quantum Electron QE 20:1507–1510

    Article  Google Scholar 

  18. Alfano RR, Tang GC, Pradhan A, Lam W, Choy DSJ, Opher E (1987) Fluorescence spectra from cancerous and normal human breast and lung tissues. IEEE J Quantum Electron QE 23:1507–1511

    Article  Google Scholar 

  19. Kalaivani R, Masilamani V, Sivaji K, Elangovan M, Selvaraj V, Balamurugan SG, Al-Salhi MS (2008) Fluorescence spectra of blood components for breast cancer diagnosis. Photomed Laser Surg 26(3):251–256

    Article  CAS  PubMed  Google Scholar 

  20. Scot MD, Lubin BH, Zuo L, Kuypers FA (1991) Erythrocyte defense against hydrogen per- oxide. Preeminent importance of catalase. J Lab Clin Med 118:7–16

    Google Scholar 

  21. Abou-Ghalia AH, Found IM (2000) Glutathione and its metabolizing enzymes in patients with different benign and malignant diseases. Clin Biochem 33:657–662

    Article  CAS  PubMed  Google Scholar 

  22. Diplock AT (1991) Antioxidant nutrients and disease prevention:an overview. Am J Clin Nutr 53:189–193

    Google Scholar 

  23. Formulary of Siddha Medicine (1972) 2nd edn. Madras: Indian medicine practitioners Co-operative pharmacy and stores Ltd: 197

  24. Welsch CW (1985) Factors affecting the growth of carcinogen induced mammary carcinomas. A review and tribute to Charles Brenton Huggins. Cancer Res 45:3415–3443

    CAS  PubMed  Google Scholar 

  25. Sujatha V, Sachdanandam P (2002) Recuperative effect of Semecarpus anacardium Linn. nut milk extract on carbohydrate metabolizing enzymes in experimental mammary carcinoma-bearing rats. Phytother Res 16:14–18

    Article  Google Scholar 

  26. Dodge JT, Mitchell C, Hanahan DJ (1963) The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys 100:119–130

    Article  CAS  PubMed  Google Scholar 

  27. Cynamon HA, Isenber JN, Nguyen C (1985) Erythrocyte malondialdehyde release invitro; a functional status in Vitamin E studies. Clin Chin Acta 15:169–176

    Article  Google Scholar 

  28. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  29. Sinha A (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  CAS  PubMed  Google Scholar 

  30. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hekstra WG (1973) Selenium, biochemical role as a component of glutathione peroxidase purification and assay. Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  31. Escrich E, Moral R, Garcá G, Costa I (2004) Identification of novel differentially expressed genes by the effect of a high-fat n-6 diet in experimental breast cancer. Mol Carcinog 40:73–78

    Article  CAS  PubMed  Google Scholar 

  32. Costa I, Solanas M, Escrich E (2002) Histopathologic characterization of mammary neoplastic lesions induced with 7, 12 dimethylbenz (alpha) anthracene in the rat: a comparative analysis with human breast tumours. Arch Pathol Lab Med 126:915–927

    PubMed  Google Scholar 

  33. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  34. Karthikeyan K, Masilamani V, Govindasamy S (1999) Spectrofluorimetric detection of DMBA-induced mouse skin carcinoma. Pathol Oncol Res 5:46–49

    Article  CAS  PubMed  Google Scholar 

  35. Masilamani V, Sivakumar N, Anand KV (2003) Diagnosis of cancer from blood by native fluorescence. Asian J Phys 12:125–132

    Google Scholar 

  36. Leij-Halfwerk S, Dagnelie PC, van Den Berg JOW, Wattimena JD, Hordijk-Luijk CH, Wilson JP (2000) Weight loss and elevated gluconeogenesisfrom alanine in lung cancer patients. Am J Clin Nutr 71:583–589

    CAS  PubMed  Google Scholar 

  37. Satyavati GV, Prasad DN, Das PK, Singh HD (1969) Anti inflammatory activity of Semecarpus anacardium Linn. A preliminary study. Ind. J Physiol Pharmacol 13:37

    CAS  Google Scholar 

  38. Abdi S, Ali A (1999) Role of oxygen free radicals in the pathogenesis and etiology of cancer. Cancer Lett 142:1–9

    Article  CAS  PubMed  Google Scholar 

  39. van Ginkel G, Sevanian A (1994) Lipid peroxidation induced membrane structural alterations. Methods Enzymol 233:273–288

    Article  PubMed  Google Scholar 

  40. Eritsland J (2000) Safety considerations of polyunsaturated fatty acids. Am J Clin Nutr 71:197S–201S

    CAS  PubMed  Google Scholar 

  41. Rice-Evans C, Burdon R (1993) Free radical lipid interactions and their pathological consequences. Prog Lipid Res 32:71–110

    Article  CAS  PubMed  Google Scholar 

  42. Faber M, Coudray C, Hida H (1995) Lipid peroxidation products and vitamin E and trace element status in patients with cancer before and after chemotherapy including adriamycin. A preliminary study. Biol Trace Elem Res 47:117–123

    Article  CAS  PubMed  Google Scholar 

  43. Huang YL, Sheu JY, Lin TH (1999) Association between oxidative stress and changes of trace elements in patients with breast cancer. Clin Biochem 32:131–136

    Article  CAS  PubMed  Google Scholar 

  44. Chakraborty S, Roy M, Taraphdar AK, Bhattacharya RK (2004) Cytotoxic effect of root extract of Tiliacora racemosa and oil of Semecarpus anacardium nut in human tumour cells. Phytother Res 18(8):595–600

    Article  PubMed  Google Scholar 

  45. Venukumar MR, Latha MS (2002) Antioxidant effect of Coscinium fenestratum in hepatotoxin induced rats. Indian J Physiol Pharmacol 46(2):223–228

    CAS  PubMed  Google Scholar 

  46. Micallef M, Lexis L, Lewandawski P (2007) Red wine consumption increases antioxidant status and decreases odidative stress in the circulation of both young and old humans. Nutr J 6:27

    Article  PubMed Central  PubMed  Google Scholar 

  47. Garg S, Sharma K, Ranjan R, Attri P, Mishra P (2009) In vivo antioxidant activity and hepatoprotective effects of methanolic extract of Mesua ferrea linn. Int J Pharma Tech Res 1(4):1692–1696

    Google Scholar 

  48. de Góes Rocha FG, Chaves KCB, Gomes CZ, Campanharo CB, Courrol LC, Schor N, Bellini MH (2010) Erythrocyte protoporphyrin fluorescence as a biomarker for monitoring antiangiogenic cancer therapy. J Fluoresc 20:1225–1231

    Article  PubMed  Google Scholar 

  49. Balasubramanian S, Elangovan V, Govindasamy S (1995) Fluorescence spectroscopic identification of 7,12-dimethylbenz(a)anthracene induced hamster buccal pouch carcinogenesis. Carcinogenesis 16:2461–2465

    Article  CAS  PubMed  Google Scholar 

  50. Yang YL, Ye YM, Li FM, Li YF, Ma PZ (1987) Characteristic autofluorescence for cancer diagnosis and its origin. Lasers Surg Med 7:528–532

    Article  CAS  PubMed  Google Scholar 

  51. Miah MI (2001) Fluorescence spectroscopy study of protoporphyrin IX metabolism level in cells. Biopolymers 62:237–240

    Article  CAS  PubMed  Google Scholar 

  52. Chang KS, Ina P, Marin N, Follen M, Richards-Kortum R (2005) Fluorescence spectroscopy as a diagnostic tool for detecting cervical pre-cancer. Gynecol Oncol 99:S61–S63

    Article  PubMed  Google Scholar 

  53. Vogeser M, Jacob K, Zachoval R (2000) Erythrocyte protoporphyrins in hepatitis C viral infection. Clin Biochem 33(5):387–391

    Article  CAS  PubMed  Google Scholar 

  54. Courrol LC, Silva FRO, Coutinho EL, Piccoli MF, Mansano RD, Vieira ND, Schor N, Bellini MH (2007) Study of blood porphyrin spectral profile for diagnosis of tumor progression. J Fluoresc 17(3):289–292

    Article  CAS  PubMed  Google Scholar 

  55. Ramadan MF, Kinni SG, Seshagiri M, Mörsel J-T (2010) Fat-soluble bioactives, fatty acid profile and radical scavenging activity of semecarpus Anacardium seed oil. J Am Oil Chem Soc 87:885–894

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that there is no conflict of interest among authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachdanandam Panchanadham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H.B.H., Vani, S., Palanivelu, S. et al. Erythrocyte Protoporphyrin Fluorescence as a Biomarker to Monitor the Anticancer Effect of Semecarpus Anacardium in DMBA Induced Mammary Carcinoma Rat Model. J Fluoresc 25, 907–915 (2015). https://doi.org/10.1007/s10895-015-1571-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1571-8

Keywords

Navigation