Skip to main content
Log in

On the Cauchy Problem for Fokker–Planck–Kolmogorov Equations with Potential Terms on Arbitrary Domains

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We study the Cauchy problem for Fokker–Planck–Kolmogorov equations for finite measures with unbounded and degenerate coefficients. Sufficient conditions for the existence and uniqueness of solutions are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics. ETH Zürich, Birkhäuser Verlag, Basel (2005)

    MATH  Google Scholar 

  2. Aronson, D.G., Besala, P.: Uniqueness of solutions of the Cauchy problem for parabolic equations. J. Math. Anal. Appl. 13, 516–526 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bogachev, V.I.: Measure Theory, vol. I, II. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  4. Bogachev, V.I., Da Prato, G., Röckner, M.: On parabolic equations for measures. Commun. Partial Differ. Eq. 33, 397–418 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bogachev, V.I., Da Prato, G., Röckner, M., Stannat, W.: Uniqueness of solutions to weak parabolic equations for measures. Bull. Lond. Math. Soc. 39(4), 631–640 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bogachev, V.I., Krylov, N.V., Röckner, M.: Elliptic and parabolic equations for measures. Russ. Math. Surv. 64(6), 973–1078 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bogachev, V.I., Krylov, N.V., Röckner, M.: On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions. Commun. Partial Differ. Eq. 26(11–12), 2037–2080 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bogachev, V.I., Röckner, M., Shaposhnikov, S.V.: On uniqueness problems related to elliptic equations for measures. J. Math. Sci. (N. Y.) 176(6), 759–773 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bogachev, V.I., Röckner, M., Shaposhnikov, S.V.: On uniqueness problems related to the Fokker–Planck–Kolmogorov equations for measures. J. Math. Sci. (N. Y.) 179(1), 1–41 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Escauriaza, L.: Bounds for the fundamental solution of elliptic and parabolic equations in nondivergence form. Commun. Partial Differ. Eq. 25(5–6), 821–845 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Flandoli, F., Gubinelli, M., Priola, E.: Well-posedness of the transport equation by stochastic perturbation. Invent. Math. 180(1), 1–53 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Figalli, A.: Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients. J. Funct. Anal. 254(1), 109–153 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, New Jersey (1964)

    MATH  Google Scholar 

  15. Gyongy, I., Krylov, N.V.: Existence of strong solutions for Ito’s stochastic equations via approximations. Probab. Theory Relat. Fields 105, 143–158 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ishige, K., Murata, M.: Uniqueness of nonnegative solutions of the Cauchy problem for parabolic equations on manifolds or domains. Ann. Scuola Norm. Sup. di Pisa Classe di Scienze 30(1), 171–223 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kolmogorov, A.N.: Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104, 415–458 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  19. Krylov, N.V.: Parabolic and elliptic equations with VMO coefficients. Commun. Partial Differ. Eq. 32, 453–475 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ladyzhenskaya, O.A., Solonnikov, V.A., Uraltseva, N.N.: Linear and quasilinear equations of parabolic type. In: Translations of Mathematical Monographs, American Mathematical Society, Providence, RI (1967)

  21. Lemle, D.L.: \(L^1(\mathbb{R}^d, \, dx)\)-Uniqueness of weak solutions for the Fokker–Planck equation associated with a class of Dirichlet operators. Elect. Res. Announc. Math. Sci. 15, 65–70 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Le Bris, C., Lions, P.-L.: Existence and uniqueness of solutions to Fokker–Planck type equations with irregular coefficients. Commun. Partial Differ. Eq. 33, 1272–1317 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pinchover, Y.: On uniqueness and nonuniqueness of positive Cauchy problem for parabolic equations with unbounded coefficients. Math. Z. 233, 569–586 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Röckner, M., Zhang, X.: Weak uniqueness of Fokker–Planck equations with degenerate and bounded coefficients. C. R. Math. Acad. Sci. Paris 348(7–8), 435–438 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shaposhnikov, S.V.: On the uniqueness of a probabilistic solution of the Cauchy problem for the Fokker–Planck–Kolmogorov equation. Teor. Veroyatnost. i Primen. 56(1), 77–99 (2011). (in Russian); English transl.: Theory Probab. Appl. 56(1) (2012) 96–115

    Article  MathSciNet  Google Scholar 

  26. Shaposhnikov, S.V.: On the uniqueness of integrable and probability solutions to the Cauchy problem for the Fokker–Planck–Kolmogorov equations. Dokl. Akad. Nauk 439(3), 323–328 (2011). (in Russian); English transl.: Doklady Math. 84(1) (2011) 565–571

    MATH  Google Scholar 

  27. Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, Berlin (1979)

    MATH  Google Scholar 

  28. Tychonoff, A.N.: Théorèmes d’unicité pour l’équation de la chaleur. Matem. Sbornik 42(2), 199–216 (1935)

    MATH  Google Scholar 

  29. Widder, D.V.: Positive temperatures on the infinite rod. Trans. Am. Math. Soc. 55(1), 85–95 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wu, L., Zhang, Y.: A new topological approach to the \(L^{\infty }\)-uniqueness of operators and \(L^1\)-uniqueness of Fokker–Planck equations. J. Funct. Anal. 241, 557–610 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to V.I. Bogachev for fruitful discussions and valuable remarks.

The work was partially supported by the RFBR Grants 14-01-00237, 14-01-91158, 14-01-00736, 14-01-90406, 15-31-20082 and by the Simons Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oxana A. Manita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manita, O.A., Shaposhnikov, S.V. On the Cauchy Problem for Fokker–Planck–Kolmogorov Equations with Potential Terms on Arbitrary Domains. J Dyn Diff Equat 28, 493–518 (2016). https://doi.org/10.1007/s10884-015-9453-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-015-9453-y

Keywords

Mathematics Subject Classification

Navigation