Skip to main content

Advertisement

Log in

Cross-comparisons of trending accuracies of continuous cardiac-output measurements: pulse contour analysis, bioreactance, and pulmonary-artery catheter

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

We compared the similarity of cardiac-output (CO) estimates between available bolus thermodilution pulmonary-artery catheters (PAC), arterial pulse-contour analysis (LiDCOplus, FloTrac and PiCCOplus), and bioreactance (NICOM). Repetitive simultaneous estimates of CO obtained from the above devices were compared in 21 cardiac-surgery patients during the first 2 h post-surgery. Mean and absolute values for CO across the devices were compared by ANOVA, Bland–Altman, Pearson moment, and linear-regression analyses. Twenty-one simultaneous CO measurements were made before and after therapeutic interventions. Mean PAC CO (5.7 ± 1.5 L min) was similar to LiDCO, FloTrac, PiCCO, and NICOM CO (6.0 ± 1.9, 5.9 ± 1.0, 5.7 ± 1.8, 5.3 ± 1.0 L min, respectively). Mean CO bias between each paired method was −0.10 (PAC–LiDCO), 0.18 (PAC–PiCCO), −0.40 (PAC–FloTrac), −0.71 (PAC–NICOM), 0.28 (LiDCO–PiCCO), 0.39 (LiDCO–FloTrac), −0.97 (NICOM–LiDCO), 0.61 (PiCCO–FloTrac), −1.0 (NICOM–FloTrac), −0.73 (NICOM–PiCCO) L/min, with limits of agreement (1.96 SD, ±95% CI) of ± 2.01, ±2.35, ±2.27, ±2.70, ±1.97, ±2.17, ±3.51, ±2.87, ±2.40, and ± 3.14 L min, respectively, and the percentage error for each of the paired devices was 35, 41, 40, 47, 33, 36, 59, 50, 42, and 55%, respectively. From Pearson moment analysis, dynamic changes in CO, estimated by each device, showed good cross-correlations. Although all devices studied recorded similar mean CO values, which dynamically changed in similar directions, they have markedly different bias and precision values relative to each other. Thus, results from prior studies that have used one device to estimate CO cannot be used to validate others devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CO:

Cardiac output

ICU:

Intensive-care unit

PAC:

Pulmonary-artery catheter

References

  1. Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med. 1970;283:447–51.

    Article  CAS  PubMed  Google Scholar 

  2. Gomez CM, Palazzo MG. Pulmonary artery catheterization in anesthesia and intensive care. Br J Anesth. 1998;81:945–56.

    Article  CAS  Google Scholar 

  3. Rapoport J, Teres D, Steingrub J, Higgins T, McGee W, Lemeshow S. Patient characteristics and ICU organizational factors that influence frequency of pulmonary artery catheterization. JAMA. 2000;283:2559–67.

    Article  CAS  PubMed  Google Scholar 

  4. Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA. The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA. 1996;276:889–97.

    Article  PubMed  Google Scholar 

  5. Sandham JD, Hull RD, Brant RF, Knox L, Pineo GF, Doig CJ, Laporta DP, Viner S, Asserini L, Devitt H, Kirby A, Jacka M. Canadian Critical Care Clinical Trials Group. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med. 2003;348:5–14.

    Article  PubMed  Google Scholar 

  6. Harvey S, Harrison DA, Singer M, Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, Brampton W, Williams D, Young D, Rowan K; PAC-Man study collaboration. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomized controlled trial. Lancet. 2005;366:472–7.

    Article  PubMed  Google Scholar 

  7. National Heart, Lung, and Blood Institute ARDS. Clinical Trials Network. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med. 2006;354:2213–24.

    Article  Google Scholar 

  8. Hadian M, Pinsky MR. Evidence based of the use of the pulmonary artery catheter: impact data and complications. Crit Care. 2006;10(suppl 3):S11–8.

    Article  Google Scholar 

  9. Wiener RS, Welch HG. Trends in the Use of the Pulmonary Artery Catheter in the United States, 1993–2004. JAMA. 2007;298:423–9.

    Article  CAS  PubMed  Google Scholar 

  10. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaesche R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A. Consensus on Circulatory Shock and Hemodynamic Monitoring, Task Force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;49:1795–815.

    Article  Google Scholar 

  11. Hadian M, Kim H, Severyn DA, Pinsky MR. Cross-comparison of cardiac output trending accuracy of LiDCO, PiCCO, FloTrac and pulmonary artery catheters. Crit Care. 2010;14:R212.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wesseling KH, de Witt B, Weber JAP. A simple device for continuous measurement of cardiac output. Adv Cardiovasc Phys. 1983;5:16–52.

    Google Scholar 

  13. Tannenbaum GA, Mathews D, Weissman C. Pulse contour cardiac output in surgical intensive care unit patients. J Clin Anesth. 1993;5:471–8.

    Article  CAS  PubMed  Google Scholar 

  14. Su NY, Huang CJ, Tsai P, Hsu YW, Hung YC, Cheng CR. Cardiac output measurement during cardiac surgery: esophageal Doppler versus pulmonary artery catheter. Acta Anaesth. 2002;40:127–33.

    Google Scholar 

  15. Dark PM, Singer M. The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med. 2004;30:2060–6.

    Article  PubMed  Google Scholar 

  16. Barin E, Haryadi D, Schookin S, Westenskow D, Zubenko V, Beliaev K, Morozov A. Evaluation of a thoracic bioimpedance cardiac output monitor during cardiac catheterization. Crit Care Med. 2000;28:698–702.

    Article  CAS  PubMed  Google Scholar 

  17. Engoren M, Barbee D. Comparison of cardiac output determined by bioimpedance, thermodilution, and the Fick method. Am J Crit Care. 2005;4:40–5.

    Google Scholar 

  18. Hamilton WF, Remington W. The measurement of the stroke volume from the pressure pulse. Am J Physiol. 1947;148:14–24.

    CAS  PubMed  Google Scholar 

  19. Hamilton TT, Huber LM, Jessen ME, Pulse CO. a less-invasive method to monitor cardiac output from arterial pressure after cardiac surgery. Ann Thorac Surg. 2002;74:S1408–12.

    Article  PubMed  Google Scholar 

  20. Pittman J, Bar-Yosef S, SumPing J, Sherwood M, Mark J. Continuous cardiac output monitoring with pulse contour analysis: A comparison with lithium indicator dilution cardiac output measurement. Crit Care Med. 2005;33:2015–2021.

    Article  PubMed  Google Scholar 

  21. Felbinger TW, Reuter DA, Eltzschig HK, Bayerlein J, Goetz AE. Cardiac index measurement during rapid preload changes: a comparison of pulmonary artery thermodilution with arterial pulse contour analysis. J Clin Anesth. 2005;17:241–8.

    Article  PubMed  Google Scholar 

  22. Manecke GR. Edwards FloTrac sensor and Vigileo monitor: easy, accurate, reliable cardiac output assessment using the arterial pulse wave. Expert Rev Med Devices. 2005;2:523–7.

    Article  PubMed  Google Scholar 

  23. McGee WT, Horswell JL, Calderon J, Janvier G, Van Severen T, Van den Berghe G, Kozikowski L. Validation of a continuous, arterial pressure-based cardiac output measurement: a multicenter, prospective clinical trial. Crit Care. 2007;11:R105.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Opdam HI, Wan L, Bellomo R. A pilot assessment of the FloTrac cardiac output monitoring system. Intensive Care Med. 2007;33:344–9.

    Article  PubMed  Google Scholar 

  25. Mayer J, Boldt J, Schöllhorn T, Röhm KD, Mengistu AM, Suttner S. Semi-invasive monitoring of cardiac output by a new device using arterial pressure waveform analysis: a comparison with intermittent pulmonary artery thermodilution in patients undergoing cardiac surgery. Br J Anaesth. 2007;98:176–82.

    Article  CAS  PubMed  Google Scholar 

  26. Bernstein DP. Continuous noninvasive real-time monitoring of stroke volume and cardiac output by thoracic electrical bioimpedance. Crit Care Med. 1986;14:898–901.

    Article  CAS  PubMed  Google Scholar 

  27. Spiess B, Patel M, Soltow L, Wright I. Comparison of bioimpedance versus thermodilution cardiac output during cardiac surgery: evaluation of a second generation bioimpedance device. J Cardiothorac Vasc Anesth. 2001;15:567–73.

    Article  CAS  PubMed  Google Scholar 

  28. Leslien S, McKee S, Newby D, Webb D, Denvir M. Non-invasive measurement of cardiac output in patients with chronic heart failure. Blood Press Monit. 2004;9:277–80.

    Article  Google Scholar 

  29. Raval NY, Squara P, Cleman M, Yalamanchili K, Winklmaier M, Burkhoff D. Multicenter evaluation of noninvasive cardiac output measurement by bioreactance technique. J Clin Monit Comput. 2008;22:113–9.

    Article  PubMed  Google Scholar 

  30. Squara P, Denjean D, Estagnasie P, Brusset A, Dib JC, Dubois C. Noninvasive cardiac output monitoring (NICOM): a clinical validation. Intensive Care Med. 2007;33:1191–4.

    Article  PubMed  Google Scholar 

  31. Keren H, Burkhoff D, Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol. 2007;293:H583–H589.

    CAS  Google Scholar 

  32. Marqué S, Cariou A, Chiche JD, Squara P. Comparison between FloTrac-Vigileo and Bioreactance, a totally noninvasive method for cardiac output monitoring. Crit Care. 2009;13:R73.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Myers J, Gujja P, Neelagaru S, Burkhoff D. Cardiac output and cardiopulmonary responses to exercise in heart failure: application of a new bio-reactance device. J Card Fail. 2007;13:629–36.

    Article  PubMed  Google Scholar 

  34. Maurer MM, Burkhoff D, Maybaum S, Franco V, Vittorio TJ, Williams P, White L, Kamalakkannan G, Myers J, Mancini DM. A multicenter study of noninvasive cardiac output by bioreactance during symptom-limited exercise. J Card Fail. 2009;15:689–99.

    Article  PubMed  Google Scholar 

  35. Squara P, Cecconi M, Rhodes A, Singer M, Chiche JD. Tracking changes in cardiac output: methodological considerations for the validation of monitoring devices. Intensive Care Med. 2009;35:1801–8.

    Article  PubMed  Google Scholar 

  36. Cecconi M, Rhodes A, Poloniecki J, Della Rocca G, Grounds RM. Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies–with specific reference to the measurement of cardiac output. Crit Care. 2009;13:201.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Monnet X, Anguel N, Naudin B, Jabot J, Richard C, Teboul JL. Arterial pressure-based cardiac output in septic patients: different accuracy of pulse contour and uncalibrated pressure waveform devices. Crit Care. 2010;14:R109.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Squara P, Rotcajg D, Denjean D, Estagnasie P, Brusset A. Comparison of monitoring performance of Bioreactance vs. pulse contour during lung recruitment maneuvers. Crit Care. 2009;13:R125.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Benomar B, Ouattara A, Estagnasie P, Brusset A, Squara P. Fluid responsiveness predicted by noninvasive bioreactance-based passive leg raise test. Intensive Care Med. 2010;36:1875–81.

    Article  PubMed  Google Scholar 

  40. Pratt B, Roteluik L, Hatib F, Frazier J, Wallen RD. Calculating arterial pressure-based cardiac output using a novel measurement and analysis method. Biomed Instrument Technol. 2007;41:403–11.

    Article  Google Scholar 

  41. WinDaq Acquisition and Playback Software In-Depth Presentation. 2007. http://www.dataq.com/applicat/index.htm.

  42. Bland JM, Altman DG. Statistical method for assessing agreement between two methods of clinical measurements. Lancet. 1986;1:307–10.

    Article  CAS  PubMed  Google Scholar 

  43. Critchley LAH, Critchley JAJH. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput. 1999;15:85–91.

    Article  CAS  PubMed  Google Scholar 

  44. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M. Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.

    Article  CAS  PubMed  Google Scholar 

  45. Nguyen HB, Corbett SW, Steele R, Banta J, Clark RT, Hayes SR, Edwards J, Cho TW, Wittlake WA. Implementation of a bundle of quality indicators for the early management of severe sepsis and septic shock is associated with decreased mortality. Crit Care Med. 2007;35:1105–12.

    Article  PubMed  Google Scholar 

  46. Donati A, Loggi S, Preiser JC, Orsetti G, Münch C, Gabbanelli V, Pelaia P, Pietropaoli P. Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest. 2007;132:1817–24.

    Article  PubMed  Google Scholar 

  47. Kapoor PM, Kakani M, Chowdhury U, Choudhury M, Lakshmy, Kiran U. Early goal-directed therapy in moderate to high-risk cardiac surgery patients. Ann Card Anaesth. 2008;11:27–34.

    Article  PubMed  Google Scholar 

  48. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial. Crit Care. 2005;9:R687–R693.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mayer J, Boldt J, Mengistu AM, Röhm KD, Suttner S. Goal-directed intraoperative therapy based on autocalibrated arterial pressure waveform analysis reduces hospital stay in high-risk surgical patients: a randomized, controlled trial. Crit Care. 2010;14:R18.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cecconi M, Fasano N, Langiano N, Divella M, Costa MG, Rhodes A, Rocca DG. Goal-directed haemodynamic therapy during elective total hip arthroplasty under regional anaesthesia. Crit Care. 2011;15:R132.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Monnet X, Teboul JL. Passive leg raising. Intensive Care Med. 2008;34:659–63.

    Article  PubMed  Google Scholar 

  52. Marquez J, McCurry K, Severyn DA, Pinsky MR. Ability of pulse power, esophageal Doppler, and arterial pulse pressure to estimate rapid changes in stroke volume in humans. Crit Care Med. 2008;36:3001–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Binder JC, Parkin WG. Non-invasive cardiac output determination: comparison of a new partial-rebreathing technique with thermodilution. Anaesth Intensive Care. 2001;29:19–23.

    CAS  PubMed  Google Scholar 

  54. Mahutte CK, Jaffe MB, Chen PA, Sasse SA, Wong DH, Sassoon CS. Oxygen Fick and modified carbon dioxide Fick cardiac outputs. Crit Care Med. 1994;22:86–95.

    Article  CAS  PubMed  Google Scholar 

  55. Johansson A, Chew M. Reliability of continuous pulse contour cardiac output measurement during hemodynamic instability. J Clin Monit Comput. 2007;21:237–42.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Cardio thoracic Intensive Care Unit nursing staff at Presbyterian University Hospital, UPMC, for their support in conducting this study. We also appreciate Edwards Life Sciences (Irvine, CA, USA), Pulsion (Munich, Germany), Cheetah Medical (Vancouver, WA, USA), and LiDCO (London, UK) for providing us with the devices, the supplies, and training for this study. This work was supported in part by NIH grants HL67181 and HL073198.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouchra Lamia.

Ethics declarations

Conflict of interest

Bouchra Lamia, Hyung Kook Kim, Don Severyn: none declared. Michael R. Pinsky is a member of the medical advisory boards for LiDCO Ltd and Edwards LifeSciences, Inc. He has stock options with LiDCO Ltd and Cheetah Medical. He has received honoraria for lectures from Edwards LifeSciences, LiDCO, and Cheetah Medical. He has received financial support to conduct laboratory research from Pulsion Ltd.

Research involving human participants and informed consent

Our Institutional Review Board approved the study and all subjects signed their informed consent.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JEPG 2703 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamia, B., Kim, H.K., Severyn, D.A. et al. Cross-comparisons of trending accuracies of continuous cardiac-output measurements: pulse contour analysis, bioreactance, and pulmonary-artery catheter. J Clin Monit Comput 32, 33–43 (2018). https://doi.org/10.1007/s10877-017-9983-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-017-9983-4

Keywords

Navigation