Skip to main content
Log in

Journal of Clinical Monitoring and Computing 2016 end of year summary: cardiovascular and hemodynamic monitoring

  • Review Paper
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

An Erratum to this article was published on 25 January 2017

Abstract

The assessment and optimization of cardiovascular and hemodynamic variables is a mainstay of patient management in the care for critically ill patients in the intensive care unit (ICU) or the operating room (OR). It is, therefore, of outstanding importance to meticulously validate technologies for hemodynamic monitoring and to study their applicability in clinical practice and, finally, their impact on treatment decisions and on patient outcome. In this regard, the Journal of Clinical Monitoring and Computing (JCMC) is an ideal platform for publishing research in the field of cardiovascular and hemodynamic monitoring. In this review, we highlight papers published last year in the JCMC in order to summarize and discuss recent developments in this research area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saugel B, Wagner JY, Scheeren TW. Cardiac output monitoring: less invasiveness, less accuracy? J Clin Monit Comput. 2016;30:753–5. doi:10.1007/s10877-016-9900-2.

    Article  PubMed  Google Scholar 

  2. Saugel B, Dueck R, Wagner JY. Measurement of blood pressure. Best Pract Res Clin Anaesthesiol. 2014;28:309–22. doi:10.1016/j.bpa.2014.08.001.

    Article  PubMed  Google Scholar 

  3. Saugel B, Cecconi M, Wagner JY, Reuter DA. Noninvasive continuous cardiac output monitoring in perioperative and intensive care medicine. Br J Anaesth. 2015;114:562–75. doi:10.1093/bja/aeu447.

    Article  CAS  PubMed  Google Scholar 

  4. Ganter MT, Alhashemi JA, Al-Shabasy AM, Schmid UM, Schott P, Shalabi SA, Badri AM, Hartnack S, Hofer CK. Continuous cardiac output measurement by un-calibrated pulse wave analysis and pulmonary artery catheter in patients with septic shock. J Clin Monit Comput. 2016;30:13–22. doi:10.1007/s10877-015-9672-0.

    Article  PubMed  Google Scholar 

  5. Scully CG, Gomatam S, Forrest S, Strauss DG. Importance of re-calibration time on pulse contour analysis agreement with thermodilution measurements of cardiac output: a retrospective analysis of intensive care unit patients. J Clin Monit Comput. 2016;30:577–86. doi:10.1007/s10877-015-9749-9.

    Article  PubMed  Google Scholar 

  6. Buhre W, Rex S. Is continuous really continuous? Crit Care Med. 2008;36:628–30. doi:10.1097/01.ccm.0000299843.88540.6c.

    Article  PubMed  Google Scholar 

  7. Metzelder SM, Coburn M, Stoppe C, Fries M, Simon TP, Reinges MH, Hollig A, Rossaint R, Marx G, Rex S. Accuracy and precision of calibrated arterial pulse contour analysis in patients with subarachnoid hemorrhage requiring high-dose vasopressor therapy: a prospective observational clinical trial. Crit Care. 2014;18:R25. doi:10.1186/cc13715.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tomasi R, Prueckner S, Czerner S, Schramm R, Preissler G, Zwissler B, von Dossow-Hanfstingl V. Comparison of an advanced minimally invasive cardiac output monitoring with a continuous invasive cardiac output monitoring during lung transplantation. J Clin Monit Comput. 2016;30:475–80. doi:10.1007/s10877-015-9741-4.

    Article  PubMed  Google Scholar 

  9. Wagner JY, Grond J, Fortin J, Negulescu I, Schofthaler M, Saugel B. Continuous noninvasive cardiac output determination using the CNAP system: evaluation of a cardiac output algorithm for the analysis of volume clamp method-derived pulse contour. J Clin Monit Comput. 2016;30:487–93. doi:10.1007/s10877-015-9744-1.

    Article  PubMed  Google Scholar 

  10. Teboul JL, Saugel B, Cecconi M, De Backer D, Hofer CK, Monnet X, Perel A, Pinsky MR, Reuter DA, Rhodes A, Squara P, Vincent JL, Scheeren TW. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med. 2016;42:1350–9. doi:10.1007/s00134-016-4375-7.

    Article  PubMed  Google Scholar 

  11. Schmid B, Fink K, Olschewski M, Richter S, Schwab T, Brunner M, Busch HJ. Accuracy and precision of transcardiopulmonary thermodilution in patients with cardiogenic shock. J Clin Monit Comput. 2016;30:849–56. doi:10.1007/s10877-015-9782-8.

    Article  PubMed  Google Scholar 

  12. Cho YJ, Koo CH, Kim TK, Hong DM, Jeon Y. Comparison of cardiac output measures by transpulmonary thermodilution, pulse contour analysis, and pulmonary artery thermodilution during off-pump coronary artery bypass surgery: a subgroup analysis of the cardiovascular anaesthesia registry at a single tertiary centre. J Clin Monit Comput. 2016;30:771–82. doi:10.1007/s10877-015-9784-6.

    Article  PubMed  Google Scholar 

  13. Kellner P, Schleusener V, Bauerfeind F, Soukup J. Influence of different infracardial positions of central venous catheters in hemodynamic monitoring using the transpulmonal thermodilution method. J Clin Monit Comput. 2016;30:629–40. doi:10.1007/s10877-015-9762-z.

    Article  PubMed  Google Scholar 

  14. Schmidt S, Westhoff TH, Compton F, Zidek W, van der Giet M. Avoiding the cross-talk phenomenon when assessing cardiac output using the transpulmonary thermodilution technique via the femoral vein access. Crit Care Med. 2007;35:2670. doi:10.1097/01.CCM.0000288114.87397.A7.

    Article  PubMed  Google Scholar 

  15. Saugel B, Umgelter A, Schuster T, Phillip V, Schmid RM, Huber W. Transpulmonary thermodilution using femoral indicator injection: a prospective trial in patients with a femoral and a jugular central venous catheter. Crit Care. 2010;14:R95. doi:10.1186/cc9030.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Terada T, Oiwa A, Maemura Y, Robert S, Kessoku S, Ochiai R. Comparison of the ability of two continuous cardiac output monitors to measure trends in cardiac output: estimated continuous cardiac output measured by modified pulse wave transit time and an arterial pulse contour-based cardiac output device. J Clin Monit Comput. 2016;30:621–7. doi:10.1007/s10877-015-9772-x.

    Article  PubMed  Google Scholar 

  17. Trinkmann F, Berger M, Doesch C, Papavassiliu T, Schoenberg SO, Borggrefe M, Kaden JJ, Saur J. Comparison of electrical velocimetry and cardiac magnetic resonance imaging for the non-invasive determination of cardiac output. J Clin Monit Comput. 2016;30:399–408. doi:10.1007/s10877-015-9731-6.

    Article  PubMed  Google Scholar 

  18. Suehiro K, Joosten A, Murphy LS, Desebbe O, Alexander B, Kim SH, Cannesson M. Accuracy and precision of minimally-invasive cardiac output monitoring in children: a systematic review and meta-analysis. J Clin Monit Comput. 2016;30:603–20. doi:10.1007/s10877-015-9757-9.

    Article  PubMed  Google Scholar 

  19. Critchley LA, Critchley JA. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput. 1999;15:85–91.

    Article  CAS  PubMed  Google Scholar 

  20. Abu-Arafeh A, Jordan H, Drummond G. Reporting of method comparison studies: a review of advice, an assessment of current practice, and specific suggestions for future reports. Br J Anaesth. 2016;117:569–75. doi:10.1093/bja/aew320.

    Article  CAS  PubMed  Google Scholar 

  21. Gregory SD, Cooney H, Diab S, Anstey C, Thom O, Fraser JF. In vitro evaluation of an ultrasonic cardiac output monitoring (USCOM) device. J Clin Monit Comput. 2016;30:69–75. doi:10.1007/s10877-015-9685-8.

    Article  PubMed  Google Scholar 

  22. Huang L, Critchley LA. Study to determine the repeatability of supra-sternal Doppler (ultrasound cardiac output monitor) during general anaesthesia: effects of scan quality, flow volume, and increasing age. Br J Anaesth. 2013;111:907–15. doi:10.1093/bja/aet254.

    Article  CAS  PubMed  Google Scholar 

  23. Huang L, Critchley LA, Lok RL, Liu Y. Correlation between supra-sternal Doppler cardiac output (USCOM) measurements and chest radiological features. Anaesthesia. 2013;68:1156–60. doi:10.1111/anae.12422.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang J, Critchley LA, Lee DC, Khaw KS, Lee SW. The effect of head up tilting on bioreactance cardiac output and stroke volume readings using suprasternal transcutaneous Doppler as a control in healthy young adults. J Clin Monit Comput. 2016;30:519–26. doi:10.1007/s10877-016-9835-7.

    Article  PubMed  Google Scholar 

  25. Critchley LA, Conway F, Anderson PJ, Tomlinson B, Critchley JA. Non-invasive continuous arterial pressure, heart rate and stroke volume measurements during graded head-up tilt in normal man. Clin Auton Res. 1997;7:97–101.

    Article  CAS  PubMed  Google Scholar 

  26. Li H, Critchley LA, Zhang J. Does using two Doppler cardiac output monitors in tandem provide a reliable trend line of changes for validation studies? J Clin Monit Comput. 2016;30:559–67. doi:10.1007/s10877-015-9753-0.

    Article  PubMed  Google Scholar 

  27. Huang L, Critchley LA, Zhang J. Major Upper Abdominal Surgery Alters the Calibration of Bioreactance Cardiac Output Readings, the NICOM, When Comparisons Are Made Against Suprasternal and Esophageal Doppler Intraoperatively. Anesth Analg. 2015;121:936–45. doi:10.1213/ane.0000000000000889.

    Article  PubMed  Google Scholar 

  28. Huang L, Critchley LA. An assessment of two Doppler-based monitors to track cardiac output changes in anaesthetised patients undergoing major surgery. Anaesth Intensive Care. 2014;42:631–9.

    CAS  PubMed  Google Scholar 

  29. Montenij LJ, Sonneveld JP, Nierich AP, Buhre WF, de Waal EE. Diagnostic accuracy of stroke volume variation measured with uncalibrated arterial waveform analysis for the prediction of fluid responsiveness in patients with impaired left ventricular function: a prospective, observational study. J Clin Monit Comput. 2016;30:481–6. doi:10.1007/s10877-015-9743-2.

    Article  CAS  PubMed  Google Scholar 

  30. Kong R, Liu Y, Mi W, Fu Q. Influences of different vasopressors on stroke volume variation and pulse pressure variation. J Clin Monit Comput. 2016;30:81–6. doi:10.1007/s10877-015-9687-6.

    Article  PubMed  Google Scholar 

  31. Stens J, Oeben J, Van Dusseldorp AA, Boer C. Non-invasive measurements of pulse pressure variation and stroke volume variation in anesthetized patients using the Nexfin blood pressure monitor. J Clin Monit Comput. 2016;30:587–94. doi:10.1007/s10877-015-9759-7.

    Article  PubMed  Google Scholar 

  32. Hemon MC, Phillips JP. Comparison of foot finding methods for deriving instantaneous pulse rates from photoplethysmographic signals. J Clin Monit Comput. 2016;30:157–68. doi:10.1007/s10877-015-9695-6.

    Article  PubMed  Google Scholar 

  33. Hickey M, Phillips JP, Kyriacou PA. Investigation of peripheral photoplethysmographic morphology changes induced during a hand-elevation study. J Clin Monit Comput. 2016;30:727–36. doi:10.1007/s10877-015-9761-0.

    Article  PubMed  Google Scholar 

  34. Hoiseth LO, Hoff IE, Hagen OA, Kirkeboen KA, Landsverk SA. Respiratory variations in the photoplethysmographic waveform amplitude depend on type of pulse oximetry device. J Clin Monit Comput. 2016;30:317–25. doi:10.1007/s10877-015-9720-9.

    Article  PubMed  Google Scholar 

  35. Sandroni C, Cavallaro F, Marano C, Falcone C, De Santis P, Antonelli M. Accuracy of plethysmographic indices as predictors of fluid responsiveness in mechanically ventilated adults: a systematic review and meta-analysis. Intensive Care Med. 2012;38:1429–37. doi:10.1007/s00134-012-2621-1.

    Article  PubMed  Google Scholar 

  36. Chu H, Wang Y, Sun Y, Wang G. Accuracy of pleth variability index to predict fluid responsiveness in mechanically ventilated patients: a systematic review and meta-analysis. J Clin Monit Comput. 2016;30:265–74. doi:10.1007/s10877-015-9742-3.

    Article  PubMed  Google Scholar 

  37. Fischer MO, Pellissier A, Saplacan V, Gerard JL, Hanouz JL, Fellahi JL. Cephalic versus digital plethysmographic variability index measurement: a comparative pilot study in cardiac surgery patients. J Cardiothorac Vasc Anesth. 2014;28:1510–5. doi:10.1053/j.jvca.2014.05.003.

    Article  PubMed  Google Scholar 

  38. Zahari M, Lee DS, Darlow BA. Algorithms that eliminate the effects of calibration artefact and trial-imposed offsets of Masimo oximeter in BOOST-NZ trial. J Clin Monit Comput. 2016;30:669–78. doi:10.1007/s10877-015-9752-1.

    Article  PubMed  Google Scholar 

  39. Darlow BA, Marschner SL, Donoghoe M, Battin MR, Broadbent RS, Elder MJ, Hewson MP, Meyer MP, Ghadge A, Graham P, McNeill NJ, Kuschel CA, Tarnow-Mordi WO, Benefits Of Oxygen Saturation Targeting-New Zealand Collaborative G. Randomized controlled trial of oxygen saturation targets in very preterm infants: two year outcomes. J Pediatr. 2014;165(30–35):e32. doi:10.1016/j.jpeds.2014.01.017.

    Google Scholar 

  40. Group BIUKC, Group BIAC, Group BIAC, Stenson BJ, Tarnow-Mordi WO, Darlow BA, Simes J, Juszczak E, Askie L, Battin M, Bowler U, Broadbent R, Cairns P, Davis PG, Deshpande S, Donoghoe M, Doyle L, Fleck BW, Ghadge A, Hague W, Halliday HL, Hewson M, King A, Kirby A, Marlow N, Meyer M, Morley C, Simmer K, Tin W, Wardle SP, Brocklehurst P (2013) Oxygen saturation and outcomes in preterm infants. N Engl J Med 368:2094–2104. doi:10.1056/NEJMoa1302298.

    Article  Google Scholar 

  41. Lee SH, Chun YM, Oh YJ, Shin S, Park SJ, Kim SY, Choi YS. Prediction of fluid responsiveness in the beach chair position using dynamic preload indices. J Clin Monit Comput. 2016;30:995–1002. doi:10.1007/s10877-015-9821-5.

    Article  PubMed  Google Scholar 

  42. Pham JC, Banks MC, Narotsky DL, Dorman T, Winters BD. The prevalence of long QT interval in post-operative intensive care unit patients. J Clin Monit Comput. 2016;30:437–43. doi:10.1007/s10877-015-9736-1.

    Article  PubMed  Google Scholar 

  43. Blessberger H, Kammler J, Domanovits H, Schlager O, Wildner B, Azar D, Schillinger M, Wiesbauer F, Steinwender C (2014) Perioperative beta-blockers for preventing surgery-related mortality and morbidity. Cochrane Database Syst Rev. doi:10.1002/14651858.CD004476.pub2.

    PubMed  Google Scholar 

  44. Lu WA, Chen GY, Shih CC, Kuo CD. The use of heart rate variability measures as indicators of autonomic nervous modulation must be careful in patients after orthotopic heart transplantation. J Clin Monit Comput. 2016;30:687–97. doi:10.1007/s10877-015-9747-y.

    Article  PubMed  Google Scholar 

  45. Mandel-Portnoy Y, Levin MA, Bansilal S, Suprun M, Lin HM, Richardson LD, Fischer GW, Halperin JL. Low intraoperative heart rate volatility is associated with early postoperative mortality in general surgical patients: a retrospective case-control study. J Clin Monit Comput. 2016;30:911–8. doi:10.1007/s10877-015-9792-6.

    Article  PubMed  Google Scholar 

  46. Grogan EL, Morris JA Jr, Norris PR, France DJ, Ozdas A, Stiles RA, Harris PA, Dawant BM, Speroff T. Reduced heart rate volatility: an early predictor of death in trauma patients. Ann Surg. 2004;240:547–54. (discussion 554–546)

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shin H. Ambient temperature effect on pulse rate variability as an alternative to heart rate variability in young adult. J Clin Monit Comput. 2016;30:939–48. doi:10.1007/s10877-015-9798-0.

    Article  PubMed  Google Scholar 

  48. Bendjelid K. The pulse oximetry plethysmographic curve revisited. Curr Opin Crit Care. 2008;14:348–53. doi:10.1097/MCC.0b013e3282fb2dc9.

    Article  PubMed  Google Scholar 

  49. Morel J, Grand N, Axiotis G, Bouchet JB, Faure M, Auboyer C, Vola M, Molliex S. High veno-arterial carbon dioxide gradient is not predictive of worst outcome after an elective cardiac surgery: a retrospective cohort study. J Clin Monit Comput. 2016;30:783–9. doi:10.1007/s10877-016-9855-3.

    Article  PubMed  Google Scholar 

  50. Viale JP. The venous-arterial partial pressure of carbon dioxide as a new monitoring of circulatory disorder: no so simple. J Clin Monit Comput. 2016;30:757–60. doi:10.1007/s10877-016-9872-2.

    Article  CAS  PubMed  Google Scholar 

  51. Bendjelid K, Schutz N, Suter PM, Romand JA. Continuous cardiac output monitoring after cardiopulmonary bypass: a comparison with bolus thermodilution measurement. Intensive Care Med. 2006;32:919–22. doi:10.1007/s00134-006-0161-2.

    Article  PubMed  Google Scholar 

  52. Bendjelid K, Treggiari MM, Romand JA. Transpulmonary lactate gradient after hypothermic cardiopulmonary bypass. Intensive Care Med. 2004;30:817–21. doi:10.1007/s00134-004-2179-7.

    Article  PubMed  Google Scholar 

  53. Gasparovic H, Plestina S, Sutlic Z, Husedzinovic I, Coric V, Ivancan V, Jelic I. Pulmonary lactate release following cardiopulmonary bypass. Eur J Cardiothorac Surg. 2007;32:882–7. doi:10.1016/j.ejcts.2007.09.001.

    Article  PubMed  Google Scholar 

  54. He HW, Liu DW, Long Y, Wang XT, Zhao ML, Lai XL. The effect of variable arterial transducer level on the accuracy of pulse contour waveform-derived measurements in critically ill patients. J Clin Monit Comput. 2016;30:569–75. doi:10.1007/s10877-015-9756-x.

    Article  PubMed  Google Scholar 

  55. Fujiwara S, Tachihara K, Mori S, Ouchi K, Yokoe C, Imaizumi U, Morimoto Y, Miki Y, Toyoguchi I, Yoshida KI, Yokoyama T. Effect of using a Planecta port with a three-way stopcock on the natural frequency of blood pressure transducer kits. J Clin Monit Comput. 2016;30:925–31. doi:10.1007/s10877-015-9795-3.

    Article  PubMed  Google Scholar 

  56. Bocchi L, Romagnoli S. Resonance artefacts in modern pressure monitoring systems. J Clin Monit Comput. 2016;30:707–14. doi:10.1007/s10877-015-9760-1.

    Article  CAS  PubMed  Google Scholar 

  57. Liu X, Wang G, Liu J. An adaptive real-time beat detection method for continuous pressure signals. J Clin Monit Comput. 2016;30:715–25. doi:10.1007/s10877-015-9770-z.

    Article  PubMed  Google Scholar 

  58. Schmid F, Goepfert MS, Franz F, Laule D, Reiter B, Goetz AE, Reuter DA. Reduction of clinically irrelevant alarms in patient monitoring by adaptive time delays. J Clin Monit Comput. 2015. doi:10.1007/s10877-015-9808-2.

    Google Scholar 

  59. Borges G, Brusamarello V. Sensor fusion methods for reducing false alarms in heart rate monitoring. J Clin Monit Comput. 2016;30:859–67. doi:10.1007/s10877-015-9786-4.

    Article  PubMed  Google Scholar 

  60. Cecconi M, Rhodes A, Poloniecki J, Della Rocca G, Grounds RM. Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies–with specific reference to the measurement of cardiac output. Crit Care. 2009;13:201. doi:10.1186/cc7129.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Saugel B, Reuter DA. Are we ready for the age of non-invasive haemodynamic monitoring? Br J Anaesth. 2014;113:340–3. doi:10.1093/bja/aeu145.

    Article  CAS  PubMed  Google Scholar 

  62. Hapfelmeier A, Cecconi M, Saugel B. Cardiac output method comparison studies: the relation of the precision of agreement and the precision of method. J Clin Monit Comput. 2016;30:149–55. doi:10.1007/s10877-015-9711-x.

    Article  PubMed  Google Scholar 

  63. Bignami E, Belletti A, Moliterni P, Frati E, Guarnieri M, Tritapepe L. Clinical practice in perioperative monitoring in adult cardiac surgery: is there a standard of care? Results from an national survey. J Clin Monit Comput. 2016;30:347–65. doi:10.1007/s10877-015-9725-4.

    Article  PubMed  Google Scholar 

  64. Carl M, Alms A, Braun J, Dongas A, Erb J, Goetz A, Goepfert M, Gogarten W, Grosse J, Heller AR, Heringlake M, Kastrup M, Kroener A, Loer SA, Marggraf G, Markewitz A, Reuter D, Schmitt DV, Schirmer U, Wiesenack C, Zwissler B, Spies C (2010) S3 guidelines for intensive care in cardiac surgery patients: hemodynamic monitoring and cardiocirculary system. Ger Med Sci. doi:10.3205/000101.

    PubMed  PubMed Central  Google Scholar 

  65. Pavlovic G, Diaper J, Ellenberger C, Frei A, Bendjelid K, Bonhomme F, Licker M. Impact of early haemodynamic goal-directed therapy in patients undergoing emergency surgery: an open prospective, randomised trial. J Clin Monit Comput. 2016;30:87–99. doi:10.1007/s10877-015-9691-x.

    Article  PubMed  Google Scholar 

  66. Bendjelid K, Marx G, Kiefer N, Simon TP, Geisen M, Hoeft A, Siegenthaler N, Hofer CK. Performance of a new pulse contour method for continuous cardiac output monitoring: validation in critically ill patients. Br J Anaesth. 2013;111:573–9. doi:10.1093/bja/aet116.

    Article  CAS  PubMed  Google Scholar 

  67. Perel A, Saugel B, Teboul JL, Malbrain ML, Belda FJ, Fernandez-Mondejar E, Kirov M, Wendon J, Lussmann R, Maggiorini M. The effects of advanced monitoring on hemodynamic management in critically ill patients: a pre and post questionnaire study. J Clin Monit Comput. 2016;30:511–8. doi:10.1007/s10877-015-9811-7.

    Article  PubMed  Google Scholar 

  68. Thibault R, Pichard C, Wernerman J, Bendjelid K. Cardiogenic shock and nutrition: safe? Intensive Care Med. 2011;37:35–45. doi:10.1007/s00134-010-2061-8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Saugel.

Ethics declarations

Conflicts of interest

BS collaborates with Pulsion Medical Systems SE (Feldkirchen, Germany) as a member of the medical advisory board. BS received honoraria for giving lectures and refunds of travel expenses from Pulsion Medical Systems SE (Feldkirchen, Germany). BS received institutional research grants and unrestricted research grants from Tensys Medical Inc. (San Diego, CA, USA). BS received honoraria for giving lectures and refunds of travel expenses from CNSystems Medizintechnik AG (Graz, Austria). BS received research support from Edwards Lifesciences (Irvince, CA, USA). KB has no conflicts of interest to declare. LAC has no conflicts of interest to declare. SR has received speaker’s fees from Edwards Lifesciences (Irvine, CA, USA). TWLS received honoraria from Edwards Lifesciences (Irvine, CA, USA) and Masimo (Irvine, CA, USA) for consulting and from Pulsion Medical Systems SE (Feldkirchen, Germany) for lecturing.

Informed consent

Not applicable.

Research involving human participants and/or animals

This is a review article not including human participants and/or animals.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10877-017-9988-z.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saugel, B., Bendjelid, K., Critchley, L.A. et al. Journal of Clinical Monitoring and Computing 2016 end of year summary: cardiovascular and hemodynamic monitoring. J Clin Monit Comput 31, 5–17 (2017). https://doi.org/10.1007/s10877-017-9976-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-017-9976-3

Keywords

Navigation