Skip to main content

Advertisement

Log in

A global model study of natural bromine sources and the effects on tropospheric chemistry using MOZART4

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Halogens in the atmosphere chemically destroy ozone. In the troposphere, bromine has higher ozone destruction efficiency than chlorine and is the halogen species with the widest geographical spread of natural sources. We investigate the relative strength of various sources of reactive tropospheric bromine and the influence of bromine on tropospheric chemistry using a 6-year simulation with the global chemistry transport model MOZART4. We consider the following sources: short-lived bromocarbons (CHBr3, CH2BrCl, CHBr2Cl, CHBrCl2, and CH2Br2) and CH3Br, bromine from airborne sea salt particles, and frost flowers and sea salt on or in the snowpack in polar regions. The total bromine emissions in our simulations add up to 31.7 Gmol(Br)/yr: 63 % from polar sources, 24.6 % from short-lived bromocarbons and 12.4 % from airborne sea salt particles. We conclude from our analysis that our global bromine emission is likely to be on the lower end of the range, because of too low emissions from airborne sea salt. Bromine chemistry has an effect on the oxidation capacity of the troposphere, not only due to its direct influence on ozone concentrations, but also by reactions with other key chemical species like HO x and NO x . Globally, the impact of bromine chemistry on tropospheric O3 is comparable to the impact of gas-phase sulfur chemistry, since the inclusion of bromine chemistry in MOZART4 leads to a decrease of the O3 burden in the troposphere by 6 Tg, while we get an increase by 5 Tg if gas-phase sulfur chemistry is switched off in the standard model. With decreased ozone burden, the simulated oxidizing capacity of the atmosphere decreases thus affecting species associated with the oxidation capacity of the atmosphere (CH3OOH, H2O2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Very-short lived species are species with lifetimes lower than half an year according to definition of the World Meteorological Organization (2010).

  2. For simplicity, we use a tropopause at 100 hPa throughout our study.

  3. Products from the Satellite GOME can be visualized at http://www.doas-bremen.de/bro_from_gome.htm. Last accessed February 5, 2011.

  4. See http://arctic.atmos.uiuc.edu/cryosphere/. Last accessed February 17, 2011.

References

  • Abbatt, J., Waschewsky, G.: Heterogeneous interactions of HOBr, HNO3, O3, and NO2 with deliquescent NaCl aerosols at room temperature. J. Phys. Chem. A 102, 3719–3725 (1998)

    Article  Google Scholar 

  • Adams, J., Holmes, N., Crowley, J.: Uptake and reaction of HOBr on frozen and dry NaCl/NaBr surfaces between 253 and 233 K. Atmos. Chem. Phys. 2, 79–91 (2002)

    Article  Google Scholar 

  • Aguzzi, A., Rossi, M.: The kinetics of the heterogeneous reaction of BrONO2 with solid alkali halides at ambient temperature. A comparison with the interaction of ClONO2 on NaCl and KBr. Phys. Chem. Chem. Phys. 106(1), 4337–4346 (1999)

    Article  Google Scholar 

  • Alexander, B., Park, R., Jacob, D., Li, Q., Yantosca, R.: Sulfate formation in sea-salt aerosols: constraints from oxygen isotopes. J. Geophys. Res. 110 (2005). doi:10.1029/2004JD005,659

  • Andreas, E.: A new sea spray generation function for wind speeds up to 32 m s − 1. J. Phys. Oceanogr. 28, 2175–2184 (1998)

    Article  Google Scholar 

  • Ayers, G., Gillett, R., Cainey, J., Dick, A.: Chloride and bromide loss from sea-salt particles in southern ocean air. J. Atmos. Chem. 33, 299–319 (1999)

    Article  Google Scholar 

  • Bobrowski, N., von Glasow, R., Aiuppa, A., Inguaggiato, S., Louban, I., Ibrahim, O., Platt, U.: Reactive halogen chemistry in volcanic plumes. J. Geophys. Res. 112, D06,311 (2007). doi:10.1029/2006JD007,206

    Google Scholar 

  • Carpenter, L., Liss, P.: On temperate sources of bromoform and other reactive organic bromine gases. J. Geophys. Res. 105(D16), 20,539–20,547 (2000)

    Article  Google Scholar 

  • Choi, S., Wang, Y., Salawitch, R., Canty, T., Joiner, J., Zeng, T., Kurosu, T., Chance, K., Richter, A., Huey, L., Neuman, J.L.J., Nowak, J., Dibb, J., Weinheimer, A., Ryerson, G.D.T., da Silva, A., Curry, J., Kinnison, D., Tilmes, S., Levelt, P.: Analysis of satellite-derived arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC. Atmos. Chem. Phys. 12, 1255–1285 (2012)

    Article  Google Scholar 

  • Davis, D., Chen, G., Kasibhatla, P., Jefferson, A., Tanner, D., Eisele, F., Lenschow, D., Neff, W., Berresheim, H.: DMS oxidation in the antarctic marine boundary layer: comparison of model simulations and field observations of DMS, DMSO, DMSO2, H2SO4(g), MSA(g), MSA(p). J. Geophys. Res. 103, 1657–1678 (1998)

    Article  Google Scholar 

  • Deiber, G., George, C., Calvé, S.L., Schweitzer, F., Mirabel, P.: Uptake study of ClONO2 and BrONO2 by halide containing droplets. Atmos. Chem. Phys. 4, 1291–1299 (2004)

    Article  Google Scholar 

  • Emmons, L., Walters, S., Hess, P., Lamarque, J.F., Pfister, G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S., Kloster, S.: Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART4). Geosci. Model Dev. 3, 43–67 (2010)

    Article  Google Scholar 

  • Enami, S., Vecitis, C., Cheng, J., Hoffmann, M., Colussi, A.: Global inorganic source of atmospheric bromine. J. Phys. Chem. A 111, 8749–8752 (2007)

    Article  Google Scholar 

  • Fickert, S., Adams, J., Crowley, J.: Activation of Br2 and BrCl via uptake of HOBr onto aqueous salt solutions. J. Geophys. Res. 104(D19), 23,719–23,727 (1999)

    Article  Google Scholar 

  • Fitzenberger, R., Bösch, H., Camy-Peyret, C., Chipperfield, M., Harder, H., Platt, U., Sinnhuber, B.M., Wagner, T., Pfeilsticker, K.: First profile measurements of tropospheric BrO. J. Geophys. Res. Lett. 27(18), 2921–2924 (2000)

    Article  Google Scholar 

  • Friess, U., Hollwedel, J., Koenig-Langlo, G., Wagner, T., Platt, U.: Dynamics and chemistry of tropospheric explosion events in the Arctic coastal region. J. Geophys. Res. 109, D06,305 (2004). doi:10.1029/2003JD004,133

    Article  Google Scholar 

  • Gerber, H.: Relative-humidity parameterization of the Navy aerosol model (NAM). In: NRL Rep. 8956, Natl. Res. Lab. Washington, D.C. (1985)

  • Gong, S., Barrie, L., Blanchet, J.P.: Modeling sea-salt aerosols in the atmosphere: 1. Model development. J. Geophys. Res. 102(D3), 3805–3818 (1997)

    Article  Google Scholar 

  • Granier, C., Lamarque, J.F., Mieville, A., Muller, J., Olivier, J., Orlando, J., Peters, J., Petron, G., Tyndall, G., Wallens, S.: POET, a database of surface emissions of ozone precursors, available on internet at http://www.aero.jussieu.fr/projet/ACCENT/POET.php (2005). Last Accessed 18 Jan 2008

  • Gribble, W.: The natural production of organobromine compounds. Environ. Sci. Pollut. Res. 7(1), 37–49 (2000)

    Article  Google Scholar 

  • Hanson, D.: Reactivity of BrONO2 and HOBr on sulfuric acid solutions at low temperatures. J. Geophys. Res. 108(D8) (2003). doi:10.1029/2002JD002,519

  • Hanson, D., Ravishankara, A., Solomon, S.: Heterogeneous reactions in sulfuric acid aerosols: a framework for model calculations. J. Geophys. Res. 99(D2), 3615–3629 (1994)

    Article  Google Scholar 

  • Hanson, D., Ravishankara, A., Lovejoy, E.: Reaction of BrONO2 with H2O on submicron sulfuric acid aerosol and the implications for the lower stratosphere. J. Geophys. Res. 101(D4), 9063–9069 (1996)

    Article  Google Scholar 

  • Harder, H., Camy-Peyret, C., Ferlemann, F., Fitzenberger, R., Hawat, T., Osterkamp, H., Schneider, M., Perner, D., Platt, U., Vradelis, P., Pfeilsticker, K.: Stratospheric BrO profiles measured at different latitudes and seasons: atmospheric observations. Geophys. Res. Lett. 25, 3843–3846 (1998)

    Article  Google Scholar 

  • Hassol, S.J.: Impacts of a Warming Arctic, International Geophysics Series, Arctic Climate Impact Assessment. Cambridge University Press (2004)

  • Hebestreit, K., Stutz, J., Rosen, D., Matveev, V., Peleg, M., Luria, M., Platt, U.: DOAS measurements of tropospheric bromine oxide in mid-latitudes. Science 283, 55–57 (1999)

    Article  Google Scholar 

  • Hegels, E., Crutzen, P., Klüpfel, T., Perner, D.: Global distribution of atmospheric bromine-monoxide from GOME on earth observing satellite ERS-2. Geophys. Res. Lett. 25, 3127–3130 (1998)

    Article  Google Scholar 

  • Hendrick, F., Roozendael, M.V., Chipperfield, M., Dorf, M., Goutail, F., Yang, X., Fayt, C., Hermans, C., Pfeilsticker, K., Pommereau, J.P., Pyle, J., Theys, N., Mazière, M.D.: Retrieval of stratospheric and tropospheric BrO profiles and columns using ground-based zenith-sky DOAS observations at Harestua, 60 °N. Atmos. Chem. Phys. 7, 4869–4885 (2007)

    Article  Google Scholar 

  • Huff, A., Abbatt, J.: Kinetics and product yields in the heterogeneous reactions of HOBr with ice surfaces containing NaBr and NaCl. J. Phys. Chem. A 106, 5279–5287 (2002)

    Article  Google Scholar 

  • Iraci, L., Michelsen, R., Ashbourn, S., Rammer, T., Golden, D.: Uptake of hypobromous acid (HOBr) by aqueous sulfuric acid solutions: low-temperature solubility and reaction. Atmos. Chem. Phys. 5, 1577–1587 (2005)

    Article  Google Scholar 

  • Jaeglé, L., Quinn, P., Bates, T., Alexander, B., Lin, J.T.: Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmos. Chem. Phys. 11, 3137–3157 (2011). doi:10.5194/acp-11-3137-2011

    Article  Google Scholar 

  • Jones, A., Anderson, P., Begoin, M., Brough, N., Hutterli, M., Marshall, G., Richter, A., Roscoe, H., Wolff, E.: BrO, blizzards, and drivers of polar tropospheric ozone depletion events. Atmos. Chem. Phys. 9, 4639–4652 (2009)

    Article  Google Scholar 

  • Kaleschke, L., Richter, A., Burrows, J., Afe, O., Heygster, G., Notholt, J., Rankin, A.M., Roscoe, H.K., Hollwedel, J., Wagner, T., Jacobi, H.W.: Frost flowers on sea ice as a source of sea salt and their influence on tropospheric halogen chemistry. Geophys. Res. Lett. 31, L16,114 (2004). doi:10.1029/2004GL020,655

    Google Scholar 

  • Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R., Fiorinono, M.: The NCEP/NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc. 82, 247–268 (2001)

    Article  Google Scholar 

  • Kloster, S., Feichter, J., Maier-Reimer, E., Six, K., Wetzel, PSP.: DMS cycle in the marine ocean-atmosphere system—a global model study. Biogeosciences 3, 29–51 (2006)

    Article  Google Scholar 

  • Koop, T., Kapilashrami, A., Molina, L., Molina, M.: Phase transitions of sea-salt/water mixtures at low temperatures: implications for ozone chemistry in the polar marine boundary layer. J. Geophys. Res. 105, 26,393–26,402 (2000)

    Google Scholar 

  • Larichev, M., Maguin, F., Bras, G.L., Poulet, G.: Kinetics and mechanism of the BrO + HO2 reaction. J. Phys. Chem. 99, 15,911–15,918 (1995)

    Article  Google Scholar 

  • Lary, D.: Gas phase atmospheric bromine photochemistry. J. Geophys. Res. 101, 1505–1516 (1996)

    Article  Google Scholar 

  • Lee, C., Kim, Y., Tanimoto, H., Bobrowski, N., Platt, U., Mori, T., Yamamoto, K., Hong, C.: High ClO and ozone depletion observed in the plume of Sakurajima volcano, Japan. Geophys. Res. Lett. 32, L21,809 (2005). doi:10.1029/2005GL023,785

    Google Scholar 

  • Lehrer, E., Hönninger, G., Platt, U.: A one dimensional model study of the mechanism of halogen liberation and vertical transport in the polar troposphere. Atmos. Chem. Phys. 4, 2427–2440 (2004)

    Article  Google Scholar 

  • Leser, H., Hönninger, G., Platt, U.: MAX-DOAS measurements of BrO and NO2 in the marine boundary layer. Geophys. Res. Lett. 30(10) (2003). doi:10.1029/2002GL015,811

  • Martin, M., Pöhler, D., Seitz, K., Sinreich, R., Platt, U.: BrO measurements over the Eastern North-Atlantic. Atmos. Chem. Phys. 9, 9545–9554 (2009)

    Article  Google Scholar 

  • Matveev, V., Peleg, M., Rosen, D., Tov-Alper, D., Stutz, J., Hebestreit, K., Platt, U., Blake, D., Luria, M.: Bromine oxide-ozone interaction over the Dead Sea. J. Geophys. Res. 106, 10,375–10,378 (2001)

    Article  Google Scholar 

  • McElroy, C., McLinden, C., McConnell, J.: Evidence for bromine monoxide in the free troposphere during the Arctic polar sunrise. Nature 397, 338–341 (1999)

    Article  Google Scholar 

  • McGivern, W., Sorkhabi, O., Suits, A., Derecskei-Kovacs, A., North, S.: Primary and secondary processes in the photodissociation of CHBr3. J. Phys. Chem. 104, 10,085–10,091 (2000)

    Google Scholar 

  • McGivern, W., Francisco, J., North, S.: Investigation of the atmospheric oxidation pathways of bromoform: initiation via OH/Cl reactions. J. Phys. Chem. 106, 6,395–6,400 (2002)

    Article  Google Scholar 

  • Millero, S.: Chemical Oceanography. CRC Press (1996)

  • Monahan, E., Spiel, D., Davidson, K.: A model of marine aerosol generation via whitecaps and wave disruption. In: Monahan, E., Niocaill, G.M. (eds.) Oceanic Whitecaps and Their Role in Air-Sea Exchange, pp. 167–174. D. Reidel, Norwell, Mass. (1986)

    Chapter  Google Scholar 

  • Morin, S., Savarino, J., Bekki, S., Gong, S., Bottenheim, J.: Signature of Arctic surface ozone depletion events in the isotope anomaly (δ 17O) of atmospheric nitrate. Atmos. Chem. Phys. 7, 1451–1569 (2007)

    Article  Google Scholar 

  • National Aeronautics and Space Administration (NASA): Chemical kinetics and photochemical data for use in atmospheric studies. In: Sander, S., Friedl, R., Ravishankara, A., Golden, D., Kolb, C., Kurylo, M., Huie, R., Orkin, V., Molina, M., Moortgat, G., Rudek, H., Wine, P., Finlayson-Pitts, B. (eds.) Jet Propulsion Laboratory—JPL Publication 06-02. California Institute of Technology, Pasadena (2006)

  • Oltmans, S., Lefohn, A., Scheel, H., Harris, J., Il, H.L., Galbally, I., Brunke, E., Meyer, C., Lathrop, J., Johnson, B., Shadwick, D., Cuevas, E., Schmidlin, F., Tarasick, D., Claude, H., Kerr, J., Uchino, O., Mohnen, V.: Trends of ozone in the troposphere. Geophys. Res. Lett. 25(2), 139–142 (1998)

    Article  Google Scholar 

  • Ordónez, C., Lamarque, J., Tilmes, S., Kinnison, D., Atlas, E., Blake, D., Santos, G.S., Brasseur, G., Saiz-Lopez, A.: Bromine and iodine chemistry in a global chemistry-climate model: descriprion and evaluation of very short-lived oceanic sources. Atmos. Chem. Phys. 12, 1423–1447 (2012)

    Article  Google Scholar 

  • Perovich, D., Richter-Menge, J.: Surface characteristics of lead ice. J. Geophys. Res. 99, 16,341–16,350 (1994)

    Google Scholar 

  • Piot, M., von Glasow, R.: The potential importance of frost flowers, recycling on snow, and open leads for ozone depletion events. Atmos. Chem. Phys. 8, 2437–2467 (2008)

    Article  Google Scholar 

  • Platt, U., Hoenninger, G.: The role of halogen species in the troposphere. Chemosphere 52, 325–338 (2003)

    Article  Google Scholar 

  • Pozzoli, L., Bey, I., Rast, S., Schultz, M., Stier, P., Feichter, J.: Trace gas amd aerosol interactions in the fully coupled model of aerosol-chemistry-climate ECHAM5-HAMMOZ: 1. Model description and insights from the spring 2001 TRACE-P experiment. J. Geophys. Res. 113 (2008). doi:10.1029/2007JD009,007

  • Pratte, P., Rossi, M.: The heterogeneous kinetics of HOBr and HOCl on acidified sea salt and model aerosol at 40–90 % relative humidity and ambient temperature. Phys. Chem. Chem. Phys. 8, 3988–4001 (2006)

    Article  Google Scholar 

  • Pszenny, A., Moldanová, J., Keene, W., Sander, R., Maben, J., Martinez, M., Crutzen, P., Perner, D., Prinn, R.: Halogen cycling and aerosol pH in the Hawaiian marine boundary layer. Atmos. Chem. Phys. 4, 147–168 (2004)

    Article  Google Scholar 

  • Putaud, J., Mihalopoulos, N., Nguyen, B., Campin, J., Belviso, S.: Seasonal-variations of atmospheric sulfur-dioxide and dimethylsulfide concentrations at amsterdam island in the southern indian-ocean. J. Atmos. Chem. 15, 117–131 (1992)

    Article  Google Scholar 

  • Quack, B., Wallace, D.: Air-sea flux of bromoform: controls, rates and implications. Glob. Biogeochem. Cycles 17(1) (2003). doi:10.1029/2002GB001,890

  • Rankin, A., Wolff, E., Martin, S.: Frost flowers: implications for tropospheric chemistry and ice core interpretation. J. Geophys. Res. 107, 4683 (2002). doi:10.1029/2002JD002,492

    Article  Google Scholar 

  • Read, K., Mahajan, A., Carpenter, L., Evans, M., Faria, B., Heard, D., Hopkins, J., Lee, J., Moller, S., Lewis, A., Mendes, L., McQuaid, J., Oetjen, H., Saiz-Lopez, A., Pilling, M., Plane, J.: Extensive halogen-mediated ozone destruction over the tropic Atlantic ocean. Nature 453, 1232–1235 (2008). doi:10.1038/nature07035

    Article  Google Scholar 

  • Richter, A., Wittrock, F., Eisinger, M., Burrows, J.: GOME observations of tropospheric BrO in northern hemispheric spring and summer 1997. Geophys. Res. Lett. 25, 2683–2686 (1998)

    Article  Google Scholar 

  • Saiz-Lopez, A., Mahajan, A., Salmon, R., Bauguitte, S.J.B., Jones, A., Roscoe, H., Plane, J.: Boundary layer halogens in coastal antarctica. Science 317, 348–351 (2007)

    Article  Google Scholar 

  • Saiz-Lopez, A., Lamarque, J., Kinnison, D., Tilmes, S., Ordónez, C., Orlando, J., Conley, A., Plane, J., Mahajan, A., Santos, G.S., Atlas, E., Blake, D., Sander, S., Schauffler, S., Thompson, A., Brasseur, G.: Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere. Atmos. Chem. Phys. 12, 3939–3949 (2012)

    Article  Google Scholar 

  • Sander, R., Crutzen, P.: Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea. J. Geophys. Res. 101(D4), 9121–9138 (1996)

    Article  Google Scholar 

  • Sander, R., Keene, W., Pszenny, A., Arimoto, R., Ayers, G., Baboukas, E., Cainey, J., Crutzen, P., Duce, R., Hoenninger, G., Huebert, B., Maenhaut, W., Mihalopoulos, N., Turekian, V., van Dingenen, R.: Inorganic bromine in the boundary layer: a critical review. Atmos. Chem. Phys. 3, 1301–1336 (2003)

    Article  Google Scholar 

  • Santos, G.S.: The effect of halogens on global tropospheric ozone. PhD Thesis, International Max Planck Research School on Earth System Modelling. Hamburg, Germany. http://www.earthsystemschool.mpg.de/fileadmin/user_upload/Documents/Theses/45_Thesis_Santos.pdf (2008)

  • Schauffler, S., Atlas, E., Blake, D., Flocke, F., Lueb, R., Lee-Taylor, J., Stroud, V., Travnicek, W.: Distributions of brominated organic compounds in the troposphere and lower stratosphere. J. Geophys. Res. 104(D17), 21,513–21,535 (1999)

    Article  Google Scholar 

  • Schofield, R., Kreher, K., Connor, B., Johnston, P., Thomas, A., Shooter, D., Chipperfield, M., Rodgers, C., Mount, G.: Retrieved tropospheric and stratospheric BrO columns over Lauder, New Zealand. J. Geophys. Res. 109(D14304) (2004). doi:10.1029/2003JD004,463

  • Schofield, R., Johnston, P., Thomas, A., Kreher, K., Connor, B., Wood, S., Shooter, D., Chipperfield, M., Richter, A., von Glasow, C.D., Rodgers, R.: Tropospheric and stratospheric BrO columns over Arrival Heights, Antarctica, 2002. J. Geophys. Res. 111(D22310) (2006). doi:10.1029/2005JD007,022

  • Schulz, M., de Leeuw, G., Balkanski, Y.: Sea-salt aerosol source functions and emissions. In: Granier, C., Netto, P., Dordrecht, C. (eds.) Emission of Atmospheric Trace Compounds, pp. 333–359. Kluwer Academic Publishers, Boston (2004)

    Chapter  Google Scholar 

  • Sciare, J., Mihalopoulos, N., Dentener, F.: Interannual variability of atmospheric dimethylsulfide in the southern indian ocean. J. Geophys. Res. 105, 26 369–26 337 (2000)

    Google Scholar 

  • Seinfeld, J.H., Pandis, S.N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley & Sons, Inc. (1998)

  • Simpson, W., Carlson, D., Hönninger, G., Douglas, T., Sturm, M., Perovich, D., Platt, U.: First-year sea-ice contact predicts bromine monoxide (BrO) levels at barrow, alaska better than potential frost flowers contac. Atmos. Chem. Phys. 7, 621–627 (2007a)

    Article  Google Scholar 

  • Simpson, W., von Glasow, R., Riedel, K., Anderson, P., Ariya, P., Bottenheim, J., Burrows, J., Carpenter, L., Friess, U., Goodsite, M., Heard, D., Jacobi, M.H.H.W., Kaleschke, L., Neff, B., Plane, J., Platt, U., Richter, A., Roscoe, H., Sander, R., Shepson, P., Sodeau, J., Steffen, A., Wagner, T., Wolff, E.: Halogens and their role in polar boundary-layer ozone depletion. Atmos. Chem. Phys. 7, 4375–4418 (2007b)

    Article  Google Scholar 

  • Smith, M., Park, P., Consterdine, I.: Marine aerosol concentrations and estimated fluxes over the sea. QJR Meteorol. Soc. 119, 809–824 (1993)

    Article  Google Scholar 

  • Sturges, W.: Excess particulate and gaseous bromine at a remote coastal location. Atmos. Environ. 24A(1), 167–171 (1990)

    Google Scholar 

  • Tang, T., McConnell, J.: Autocatalytic release of bromine from arctic snow pack during polar sunrise. Geophys. Res. Lett. 23, 2633–2636 (1996)

    Article  Google Scholar 

  • Tarasick, D., Bottenheim, J.: Surface ozone depletion episodes in the Arctic and Antarctic from historical ozonesonde records. Atmos. Chem. Phys. 2, 197–205 (2002)

    Article  Google Scholar 

  • Theys, N., Roozendael, M.V., Hendrick, F., Fayt, C., Hermans, C., Baray, J.L., Goutail, F., Pommereau, J.P., Mazière, M.D.: Retrieval of stratospheric and tropospheric BrO columns from multi-axis DOAS measurements at Reunion Island (21 °S, 56 °E). Atmos. Chem. Phys. 7, 4733–4749 (2007)

    Article  Google Scholar 

  • Tuckermann, M., Ackermann, R., Gölz, C., Lorenzen-Schmidt, H., Senne, T., Stutz, J., Trost, B., Unold, W., Platt, U.: DOAS-observation of halogen radical-catalysed Arctic boundary layer ozone destruction during the ARCTOC-campaigns 1995 and 1996 in Ny-Alesund, Spitsbergen. Tellus 49B, 533–555 (1997)

    Google Scholar 

  • Van Roozendael, M., Wagner, T., Richter, A., Pundt, I., Arlander, D.W., Burrows, J.P., Chipperfield, M., Fayt, C., Johnston, P.V., Lambert, J.-C., Kreher, K., Pfeilsticker, K., Platt, U., Pommereau, J.-P., Sinnhuber, B.-M., Tornkvist, K.K., Wittrock, F.: Intercomparison of BrO measurements from ERS-2 GOME, ground-based and balloon platforms. Adv. Space Res. 29(11), 1661–1666 (2002)

    Article  Google Scholar 

  • Vogt, R., Crutzen, P., Sander, R.: A mechanism for halogen release from sea-salt aerosol in the remote boundary layer. Nature 383, 327–330 (1996)

    Article  Google Scholar 

  • von Glasow, R., von Kuhlmann, R., Lawrence, M., Platt, U., Crutzen, P.: Impact of reactive bromine chemistry in the troposphere. Atmos. Chem. Phys. 4, 2481–2497 (2004)

    Article  Google Scholar 

  • Wachsmuth, M., Gäggeler, H., von Glasow, R., Ammann, M.: Accommodation coefficient of hobr on deliquescent sodium bromine aerosol particles. Atmos. Chem. Phys. 2, 121–131 (2002)

    Article  Google Scholar 

  • Wagner, T., Platt, U.: Observation of tropospheric BrO from GOME satellite. Nature 395, 486–490 (1998)

    Article  Google Scholar 

  • Wagner, T., Leue, C., Wenig, M., Pfeilsticker, K., Platt, U.: Spatial and temporal distribution of enhanced boundary layer BrO concentrations measured by the GOME instrument aboard ERS-2. J. Geophys. Res. 106(D20), 24,225–24,235 (2001)

    Article  Google Scholar 

  • Wagner, T., Ibrahim, O., Sinreich, R., Friess, U., von Glasow, R., Platt, U.: Enhanced tropospheric BrO over Antarctic sea ice in mid winter observed by MAX-DOAS on board the research vessel Polarstern. Atmos. Chem. Phys. 7, 3129–3142 (2007)

    Article  Google Scholar 

  • Warneck, P.: Chemistry of the Natural Atmosphere. International Geophysics Series, vol. 71, 2nd edn. Academic Press (1999)

  • Wennberg, P., Hanisco, T., Jaegle, T., Jacob, D., Hintsa, E., Lanzendorf, E., Gao, J.A.R., Keim, E., Donnelly, S., Negro, L., Fahey, D., McKeen, S., Salawitch, R., Webster, C., May, R., Herman, R., Proffitt, M., Margitan, J., Atlas, E., Schauffler, S., Flocke, F., McElroy, C., Bui, T.: Hydrogen radicals, nitrogen radicals, and the production of O3 in the upper troposphere. Science 279, 49–53 (1998)

    Article  Google Scholar 

  • World Meteorological Organization: Scientific Assessment of Ozone Depletion: 20010. Global Ozone Research and Monitoring Project—Report n. 52. WMO, Geneva (2010)

  • Yang, X., Cox, R., Warwick, N., Pyle, J., Carver, G., O’Connor, F., Savage, N.: Tropospheric bromine chemistry and its impacts on ozone: a model study. J. Geophys. Res. 110(D23311) (2005). doi:10.1029/2005JD006244

Download references

Acknowledgements

GSS and SR are very grateful to Guy Brasseur for interesting and enlightening discussions. The authors further thank Louisa Emmons, Jean-François Lamarque, John Orlando, and Stacy Walters (in alphabetical order) for their advice in many aspects of the usage of MOZART4 and their fruitful discussion about the model setup. The authors also thank Andreas Richter and Lars Kaleschke for sharing their expertise in satellite retrievals and sea salt chemistry and physics. The authors are grateful to the reviewers who helped to improve this contribution considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Sousa Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sousa Santos, G., Rast, S. A global model study of natural bromine sources and the effects on tropospheric chemistry using MOZART4. J Atmos Chem 70, 69–89 (2013). https://doi.org/10.1007/s10874-013-9252-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-013-9252-y

Keywords

Navigation