Skip to main content

Sea-salt aerosol source functions and emissions

  • Conference paper
Emissions of Atmospheric Trace Compounds

Part of the book series: Advances in Global Change Research ((AGLO,volume 18))

Abstract

Sea spray aerosols are important for a wide variety of processes. Part of the current interest is their role in climate (Penner et al., 2001). Sea spray aerosol contributes to atmospheric cooling because they scatter incoming solar radiation. It is a natural component of the climate system and therefore can not be regarded as a forcing component. However, it is often neglected in global climate models and may be responsible for feedback effects. Latham and Smith (1990) suggested that a changing climate would alter surface winds and thus sea spray emissions. Although the sea spray aerosol number concentrations are not very high compared to those of anthropogenic aerosols such as ammonium sulphates, their role is significant because the oceans cover 70% of the Earth, whereas anthropogenic aerosols are rather locally produced. Sea-salt is the dominant submicrometer scatterer in most ocean regions and dominates the marine boundary layer particulate mass concentration in remote oceanic regions, with a significant fraction occurring in the submicrometer size range (IPCC., 2001). Sea-salt contributes 44% to the global aerosol optical depth. Estimates for top-of-atmosphere, global-annual radiative forcing due to sea-salt are -1.51 and -5.03 Wm2 for low and high emission values, respectively (IPCC., 2001). Sea spray not only affects climate by scattering of solar radiation, it also acts as cloud condensation nuclei and thus contributes to the indirect aerosol effect (IAE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreas, E.L., Model estimates of the effects of sea spray on air-sea heat fluxes. In: Mestayer, P.G., E.C. Monahan and P.A. Beetham (Eds.), Modeling the fate and influence of marine spray. Marine Sciences Inst., Univ. of Connecticut, Avery Point Groton, CT 06340, pp. 17–28, 1990.

    Google Scholar 

  • Andreas, E.L., Sea spray and the turbulent air-sea heat fluxes, J. Geophys. Res., 97, 11 429–11441, 1992.

    Article  Google Scholar 

  • Andreas, E.L., Reply, J. Geophys. Res., 99, 14345–14350, 1994.

    Article  Google Scholar 

  • Andreas, E. L., J. B. Edson, E. C. Monahan, M. P. Rouault, and S. D. Smith, The spray contribution to net evaporation from the sea: A review of recent progress, Boundary Layer Meteorol., 72, 3–52, 1995.

    Article  Google Scholar 

  • Andreas, E. L., A new sea spray generation function for wind speeds up to 32 m s ‘, J. Phys. Oceanogr., 28, 2175–2184, 1998.

    Article  Google Scholar 

  • Andreas, E.L., M.J. Pattison and S. E. Belcher, “Production rates of seas-spray droplets” by M.J. pattisoin and S.E. Belcher: Clarification and elaboration, J. Geophys. Res., 106, 7157–7161, 2001.

    Article  Google Scholar 

  • Blanchard, D.C., Electrification of the atmosphere by particles from bubbles in the sea. In: M. Sears (Ed.), Progress in Oceanography, Vol I, Pergamon, NY, pp. 73–197, 1963.

    Google Scholar 

  • Blanchard, D.C., The production, distribution, and bacterial enrichment of the sea-salt aerosol. In: P.S. Liss and W.G.N. Slinn (Eds.), Air-sea exchange of gases and particles, Reidel, pp. 407–454, 1983.

    Google Scholar 

  • Blanchard, D.C., The size and height to which jet drops are ejected from bursting bubbles in sea water, J. Geophys. Res. 94, 10999–11002, 1989.

    Article  Google Scholar 

  • Boers, R., J.B. Jensen and P.B. Krummel, Microphysical and radiative structure of marine stratocumulus clouds over the Southern Ocean: Summer results and seasonal differences. Quart. J. Royal Met. Soc, 124, 151–168, 1998.

    Article  Google Scholar 

  • Burk, S.D., The generation, turbulent transfer anddeposition of the sea-salt aerosol, J. Atmos. Sci., 41, 3040–3051, 1984.

    Article  Google Scholar 

  • Dekker, H.J., and G. de Leeuw, Bubble excitation of surface waves and aerosol droplet production: a simple dynamical model, J. Geophys. Res., 98, 10223–10232, 1993.

    Article  Google Scholar 

  • De Leeuw, G., Vertical profiles of giant particles close above the sea surface, Tellus, 38B, 51–61, 1986.

    Article  Google Scholar 

  • De Leeuw, G., Profiling of aerosol concentrations, particle size distributions and relative humidity in the atmospheric surface layer over the North Sea, Tellus, 42B, 342–354, 1990.

    Google Scholar 

  • De Leeuw, G., F.P. Neele, M. Hill, M.H. Smith and E. Vignati. Sea spray aerosol production by waves breaking in the surf zone, J. Geophys. Res., 105, 29397–29409, 2000.

    Article  Google Scholar 

  • De Leeuw, G., and L.H. Cohen. Bubble size distributions on the North Atlantic and the North Sea. in Gas Transfer and water Surfaces, edited by M.A. Donelan, W.M. Drennan, E.S. Salzman, and R. Wanninkhof, pp. 271–277, AGU, 2001.

    Google Scholar 

  • De Leeuw, G., L.H. Cohen, L.M. Frohn, G. Geernaert, O. Hertel, B. Jensen, T. Jickells, L. Klein, G. J. Kunz, S. Lund, M.M. Moerman, F. Müller, B. Pedersen, K. von Salzen, K. H. Schliinzen, M. Schulz, C. A. Skjoth, L.L. Sorensen, L. Spokes, S. Tamm and E. Vignati, Atmospheric input of nitrogen into the North Sea: ANICE project overview. Continental Shelf Research 21, 2073–2094, 2001.

    Article  Google Scholar 

  • Erickson, D.J., J.T. Merrill, and R.A. Duce, Seasonal estimates of global atmospheric sea-salt distributions, J. Geophys. Res., 91, 1067–1072, 1986.

    Article  Google Scholar 

  • Erickson, D.J., and R.A. Duce, On the global flux of atmospheric sea salt, J. Geophys. Res., 93, 14079–14088, 1988.

    Article  Google Scholar 

  • Erickson III, D. J. C. Seuzaret, W.C. Keene, and S. L. Gong, A general circulation model based calculation of HCl and CLNO2 production from sea salt dechlorination: Reactive Chlorine Emissions Inventory, J. Geophys. Res., 104, 8347–8372, 1999.

    Article  Google Scholar 

  • Fitzgerald, J.W., Approximation formulas for the equilibrium size of an aerosol particle as a function of its dry size and composition and the ambient relative humidity, J. Appl. Meteor., 14, 1044–1049, 1975.

    Article  Google Scholar 

  • Gerber, H.E., Relativehumidity parameterization of the Navy Aerosol Model (NAM), Naval Research Laboratory, Washington D.C., NRL Report 8956, 1985.

    Google Scholar 

  • Gong, S.L., L.A. Barrie, J.M. Prospero, D.L. Savoie, G.P. Ayers, J.-P. Blanchet, and L. Spacek, Modeling sea-salt aerosols in the atmosphere 2. Atmospheric concentrations and fluxes, J. Geophys. Res., 102, 3819–3830, 1997.

    Article  Google Scholar 

  • Gong, S.L., L.A. Barrie, J.-P. Blanchet, and L. Spacek, Modeling size-distributed sea-salt aerosols in the atmosphere. An application using Canadian climate models, in Air Pollution Modeling and its Applications XII, edited by S.-E. Gryning, and N. Chaumerliac, Plenum Press, New York, 1998.

    Google Scholar 

  • Grini, A., G. Myhre, J.K. Sundet, and I.S.A. Isaksen, Modeling the annual cycle of sea salt in the global 3D model Oslo CTM2: Concentrations, fluxes and radiative impact, J. of Climate, 15, 1717–1730, 2002.

    Article  Google Scholar 

  • Guelle, W., M. Schulz, Y. Balkanski and F. Dentener, Influence of the source formulation on modeling the atmospheric global distribution of sea salt aerosol, J. Geophys. Res., 106, 27509–27524, 2001.

    Article  Google Scholar 

  • Hoppel, W.A., G.M. Frick and J.W. Fitzgerald, The surface source function for sea-salt aerosol and aerosol dry deposition to the ocean surface, Accepted for publication in J. Geophys. Res., 2002.

    Google Scholar 

  • IPCC., Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, J. T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds), Cambridge University Press, U.K. and New York, NY., USA, 2001.

    Google Scholar 

  • Katsaros, K.B., and G. de Leeuw, Sea spray and the turbulent air-sea heat fluxes — Comments, J. Geophys. Res., 99, 14339–14343, 1994.

    Article  Google Scholar 

  • Kientzler, C.F., A.B. Arens, D. Blanchard and A.H. Woodcock, Photographic investigation of the projection of droplets by bubbles bursting at the water surface, Tellus, 6, 1–7, 1954.

    Article  Google Scholar 

  • Latham, J. and M.H. Smith, Effect on global warming of wind-dependent aerosol generation at the ocean surface, Nature, 347, 372–373, 1990.

    Article  Google Scholar 

  • Leifer, I., and G. de Leeuw. Gas transfer at water interfaces, in Gas Transfer and water Surfaces, edited by M.A. Donelan, W.M. Drennan, E.S. Salzman, and R. Wanninkhof, pp. 303–309, AGU, 2001.

    Google Scholar 

  • MacIntyre, F., Flow patterns in breaking bubbles, J. Geophys. Res., 77, 5211–5228, 1972.

    Article  Google Scholar 

  • Marks, R., Preliminary investigations on the influence of rain on the production, concentration, and vertical distribution of sea salt aerosol, J. Geophys. Res., 95, 22299–22304, 1990.

    Article  Google Scholar 

  • Mårtensson, M., E. D. Nilsson, G. de Leeuw, L.H. Cohen, and H-C Hansson, Laboratory simulations of the primary marine aerosol generated by bubble bursting, Accepted for publication in J. Geophys. Res., 2002.

    Google Scholar 

  • Medwin, H. and N.D. Breitz, Ambient and transient bubble spectral densities inquiescent seas and under spilling breakers, J. Geophys. Res. 94, 12751–12759, 1989.

    Article  Google Scholar 

  • Monahan, E. C., K. L. Davidson and D. E. Spiel, Whitecap aerosol productivity deduced from simulation tank measurements, J. Geophys. Res. 87, 8898–8904, 1982.

    Article  Google Scholar 

  • Monahan, E.C., C.W. Fairall, K.L. Davidson and P.J. Boyle, Observed inter-relations between 10 m winds, ocean whitecaps and marine aerosols, Quart. J. R. Met. Soc. 109, 379–392, 1983.

    Article  Google Scholar 

  • Monahan, E. C., D. E. Spiel, and K. L. Davidson, A model of marine aerosol generation via whitecaps and wave disruption, in Oceanic Whitecaps and Their Role in Air-Sea Exchange, E. C. Monahan and G. Mac Niocaill. Eds., D. Reidel, 167–174, 1986.

    Google Scholar 

  • Monahan, E.C. and I.G. O’Muircheartaigh, Whitecaps and the passive remote sensing of the ocean surface, Int. J. Remote Sensing, 7, 627–642, 1986.

    Article  Google Scholar 

  • Monahan E.C. and H.G. Dam, Bubbles: An estimate of their role in the global oceanic flux of carbon, J. Geophys. Res., 106, 9377–9383, 2001.

    Article  Google Scholar 

  • Nilsson, E.D., Ü. Rannik, E. Swietlicki, C. Leck, P.P. Aalto, J. Zhou and M. Norman, Turbulent aerosol fluxes over the Arctic Ocean 2. Wind-driven sources from the sea, J. Geophys. Res., 106, 32139–32154, 2001.

    Article  Google Scholar 

  • O’Dowd, C.D., M.H. Smith, I.E. Consterdine, and J.A. Lowe, Marine aerosol, sea salt, and the marine sulphur cycle: a short review, Atmospheric Environment 31, 73–80, 1997.

    Article  Google Scholar 

  • O’Dowd, C.D., J.A. Lowe and M.H. Smith, Coupling of sea-salt and sulphate interactions and its impact on cloud droplet concentration predictions, Geophy. Res. Lett., 26, 1311–1314, 1999a.

    Article  Google Scholar 

  • O’Dowd, C.D., J.A. Lowe and M.H. Smith, Observations and modelling of aerosol growth in marine stratocumulus, Atmos. Environ., 33, 3053–3062, 1999b.

    Google Scholar 

  • O’Dowd, C.D., J.A. Lowe, N. Clegg N, M.H. Smith and S.L. Clegg, Modeling heterogeneous sulphate production in maritime stratiform clouds, J. Geophys. Res., 105, 7143–7160, 2000.

    Article  Google Scholar 

  • Pattison, M.J. and S.E. Belcher, Production rates of sea-spray droplets, J. Geophys. Res. 104, 18 397–18 407, 1999.

    Google Scholar 

  • Penner, J.E., coordinator, Aerosols, their direct and indirect effects, in Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds), Cambridge University Press, U.K. and New York, NY., USA, 2001.

    Google Scholar 

  • Reid, J.S., H.H. Jonsson. M.H. Smith and A. Smirnov, Evolution of the vertical profile and flux of large sea-salt particles in the coastal zone, J. Geophys. Res., 106, 12, 039–12,053, 2001.

    Google Scholar 

  • Schack, C J., S. E. Pratsinis, and S. K. Friedlander, A general correlation for deposition of suspended particles from turbulent gases to completely rough surfaces, Atmos. Environ., 79, 953–960, 1985.

    Google Scholar 

  • Schulz M., J. van Beusekom, K. Bigalke, U. Brockmann, W. Dannecker, H. Gerwig, H. Grassl, C.-J. Lenz, K. Michaelsen, U. Niemeier, T. Nitz, E. Plate, T. Pohlmann, T. Raabe, A. Rebers, V. Reinhardt, M. Schatzmann, K.H. Schlünzen, R. Schmidt-Nia, T. Stahlschmidt, G. Steinhoff, K. von Salzen, The atmospheric impact on fluxes of matter and energy in the German Bight, Dt. Hydrogr. Z., 51, 133–154, 1999.

    Article  Google Scholar 

  • Seinfeld, J.H., and S. Pandis, Atmospheric Chemistry and Physics from Air Pollution to Climate Change, John Wiley and Sons, New York, 1326 pp., 1998.

    Google Scholar 

  • Slinn, S.A. and W.G.N. Slinn, Predictions for particle deposition on natural waters, Atmospheric Environment, 14, 1013–1016, 1980.

    Article  Google Scholar 

  • Smith, M.H., M.K. Hill, P.M. Park and I.E. Consterdine, Aerosol concentrations and estimated fluxes ver the sea. In: Mestayer, P.G., E.C. Monahan and P.A. Beetham (Eds.), Modeling the fate and influence of marine spray. Marine Sciences Inst., Univ. of Connecticut, Avery Point Groton, CT 06340, pp. 17–28, 1990.

    Google Scholar 

  • Smith, M. H., P. M. Park, and I. E. Consterdine, Marine aerosol concentrations and estimated fluxes over the sea, Q. J. R. Meteorol. Soc, 119, 809–824, 1993.

    Article  Google Scholar 

  • Smith, M. H., and N. M. Harrison, The sea spray generation function, J. Aerosol Sci., 29, Suppl. 1, S189–S190, 1998.

    Article  Google Scholar 

  • Spiel, D.E., The number and size of jet drops produced by air bubbles bursting on a fresh water surface, J. Geophys. Res., 99, 10,289–10,296, 1994a.

    Article  Google Scholar 

  • Spiel, D.E., The sizes of jet drops produced by air bubbles bursting on sea- and fresh water surfaces, Tellus, Ser. B, 46, 325–338, 1994b.

    Article  Google Scholar 

  • Spiel, D.E., On the births of jet drops from bubbles bursting on water surfaces, J. Geophys. Res., 100, 4,995–5,006, 1995.

    Google Scholar 

  • Spiel, D.E., More on the births of jet drops from bubbles bursting on seawater surfaces, J. Geophys. Res., 102, 5,815–5,821, 1997.

    Google Scholar 

  • Spiel, D.E., On the births of film drops from bubbles bursting on seawater surfaces, J. Geophys. Res., 103, 24,907–24,918, 1998.

    Article  Google Scholar 

  • Spillane, M.C., E.C. Monahan, P.A. Bowyer, D.M. Doyle, and P.J. Stabeno, Whitecaps and global fluxes, in Oceanic Whitecaps, pp. Monahan, E.C., Mac Niocaill G. (eds.), Reidel Publ.Comp., Dordrecht, 209–218, 1986.

    Chapter  Google Scholar 

  • Stramska, M., Vertical profiles of sea salt aerosol: A numerical model, Acta Geophys. Pol., 35,87–100, 1987.

    Google Scholar 

  • Stull, R., An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp., 1988.

    Google Scholar 

  • Takemura, T., H. Okamoto, Y. Marujama, A. Numaguti, A. Higurashi, and T. Nakajima, Global three-dimensional simulation of aerosol optical thickness distribution of various origins, J. Geophys. Res., 105, 17853–17873, 2000.

    Article  Google Scholar 

  • Tegen, I., P. Hollrig, M. Chin, I. Fung, D. Jacob, and J. Penner, Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results, J. Geophys. Res., 102, 23895–23915, 1997.

    Article  Google Scholar 

  • Vignati, E., G. de Leeuw and R. Berkowicz. Modeling coastal aerosol transport and effects of surf-produced aerosols on processes in the marine atmospheric boundary layer, J. Geophys. Res., 106, 20225–20238, 2001.

    Article  Google Scholar 

  • Wu, J., J. J. Murray, and R. J. Lai, Production and distributions of sea spray, J. Geophys. Res., 89,8163–8169, 1984.

    Article  Google Scholar 

  • Woolf, D.K., P.A. Bowyer, and E. C. Monahan., Discriminating between the film drops and jet drops produced by a simulated whitecap, J. Geophys. Res., 92, 5142–5150, 1987.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Schulz, M., de Leeuw, G., Balkanski, Y. (2004). Sea-salt aerosol source functions and emissions. In: Granier, C., Artaxo, P., Reeves, C.E. (eds) Emissions of Atmospheric Trace Compounds. Advances in Global Change Research, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2167-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2167-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6605-3

  • Online ISBN: 978-1-4020-2167-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics