Skip to main content
Log in

Nano breathers and molecular dynamics simulations in hydrogen-bonded chains

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Non-linear localization phenomena in biological lattices have attracted a steadily growing interest and their existence has been predicted in a wide range of physical settings. We investigate the non-linear proton dynamics of a hydrogen-bonded chain in a semi-classical limit using the coherent state method combined with a Holstein–Primakoff bosonic representation. We demonstrate that even a weak inherent discreteness in the hydrogen-bonded (HB) chain may drastically modify the dynamics of the non-linear system, leading to instabilities that have no analog in the continuum limit. We suggest a possible localization mechanism of polarization oscillations of protons in a hydrogen-bonded chain through modulational instability analysis. This mechanism arises due to the neighboring proton–proton interaction and coherent tunneling of protons along hydrogen bonds and/or around heavy atoms. We present a detailed analysis of modulational instability, and highlight the role of the interaction strength of neighboring protons in the process of bioenergy localization. We perform molecular dynamics simulations and demonstrate the existence of nanoscale discrete breather (DB) modes in the hydrogen-bonded chain. These highly localized and long-lived non-linear breather modes may play a functional role in targeted energy transfer in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Papa, S.: Molecular mechanism of proton translocation by the cytochrome system and the ATPase of mitochondria. Role of proteins. J. Bioenerg. Biomembr. 14, 69–86 (1982)

    Article  Google Scholar 

  2. Buch-Pedersen, M.J., Pedersen, B.P., Veierskov, B., Nissen, P., Palmgren, M.G.: Protons and how they are transported by proton pumps. Pflügers Arch.-Eur. J. Physiol. 457, 573–579 (2009)

    Article  Google Scholar 

  3. Whitehead, S.J., Iwaki, M., Cotton, N.P., Rich, P.R., Jackson, J.B.: Inhibition of proton-transfer steps in transhydrogenase by transition metal ions. Biochim. Biophys. Acta 1787, 1276–1288 (2009)

    Article  Google Scholar 

  4. Pedersen, A., Karlsson, G.B., Rydström, J.: Proton-translocating transhydrogenase: an update of unsolved and controversial issues. J. Bioenerg. Biomembr. 40, 463–473 (2008)

    Article  Google Scholar 

  5. Schultz, B.E., Chan, S.I.: Structures and proton-pumping strategies of mitochondrial respiratory enzymes. Annu. Rev. Biophys. Biomol. Struct. 30, 23–65 (2001)

    Article  Google Scholar 

  6. Jormakka, M., Byrne, B., Iwata, S.: Protonmotive force generation by a redox loop mechanism. FEBS Lett. 12, 25–30 (2003)

    Article  Google Scholar 

  7. Berry, M.N.: The function of energy-dependent redox reactions in cell metabolism. FEBS Lett. 117, K106–K120 (1980)

    Article  ADS  Google Scholar 

  8. Berry, M.N.: An electrochemical interpretation of metabolism. FEBS Lett. 134, 133–138 (1981)

    Article  Google Scholar 

  9. Nagle, J.F., Mille, M., Morowitz, H.J.: Theory of hydrogen-bonded chains in bioenergetics. J. Chem. Phys. 72, 3959(1–13) (1980)

    Article  ADS  Google Scholar 

  10. Blair, D.F.: Flagellar movement driven by proton translocation. FEBS Lett. 545, 86–95 (2003)

    Article  Google Scholar 

  11. Yomosa, S.: Dynamics of the protons in one-dimensional hydrogen-bonded systems. J. Phys. Soc. Jpn. 51, 3318–3324 (1982)

    Article  ADS  Google Scholar 

  12. Hennig, D., Neißner, C., Velarde, M.G., Ebeling, W.: Effect of anharmonicity on charge transport in hydrogen-bonded systems. Phys. Rev. B 73, 024306(1–10) (2006)

    ADS  Google Scholar 

  13. Sinkala, Z.: Soliton/exciton transport in proteins. J. Theor. Biol. 241, 919–927 (2006)

    Article  MathSciNet  Google Scholar 

  14. Takasu, I., Sugawara, T., Mochida, T.: Dielectric response in bisquaric acid crystal: possible generation of protonic soliton in a quasi-one-dimensional hydrogen-bonded system. J. Phys. Chem. B 108, 18495–18499 (2004)

    Article  Google Scholar 

  15. Xu, J.-Z.: Soliton dynamics in the helix polypeptide chains. Chaos, Solitons Fractals 11, 779–790 (2000)

    Article  ADS  MATH  Google Scholar 

  16. Pang, X.F.: Improvement of the Davydov theory of bioenergy transport in protein molecular systems. Phys. Rev. E 62, 6989–6998 (2000)

    Article  ADS  Google Scholar 

  17. Merz, H., Zundel, G.: Proton conduction in bacteriorhodopsin via a hydrogen-bonded chain with large proton polarizability. Biochem. Biophys. Res. Commun. 101, 540–546 (1981)

    Article  Google Scholar 

  18. Racker, E.: A New Look at Mechanisms in Bioenergetics. Academic Press, New York (1976)

    Google Scholar 

  19. Förster, K., Turina, P., Drepper, F., Haehnel, W., Fischer, S., Gräber, P., Petersen, J.: Proton transport coupled ATP synthesis by the purified yeast H + -ATP synthase in proteoliposomes. Biochim. Biophys. Acta 1797, 1828–1837 (2010)

    Article  Google Scholar 

  20. Dilley, R.A., Giaquinta, R.T.: H +  ion transport and energy transduction in chloroplasts. Curr. Top. Membrane. Transp. 7, 49–107 (1975)

    Article  Google Scholar 

  21. Henderson, R.: The purple membrane from Halobacterium halobium. Annu. Rev. Biophys. Bioeng. 6, 87–109 (1977)

    Article  Google Scholar 

  22. Peyrard, M., Pnevmatikos, St., Flytzanis, N.: Dynamics of two-component solitary waves in hydrogen-bonded chains. Phys. Rev. A 36, 903–914 (1987)

    Article  ADS  Google Scholar 

  23. Gordon, A.: On soliton mechanism for diffusion of ionic defects in hydrogen-bonded solids. Nuovo Cim. 12, 229–232 (1990)

    Article  ADS  Google Scholar 

  24. Peyrard, M., Dauxois, T., Hoyet, H.: Dynamics of DNA melting. Nanobiology 1, 313–324 (1992)

    Google Scholar 

  25. Hochstrasser, D., Mertens, F.G., Burrner, H.: Energy transport by lattice solitons in α-helical proteins. Phys. Rev. A 40, 2602–2610 (1989)

    Article  ADS  Google Scholar 

  26. Gaveau, B., Moreau, M., Schuman, B.: Microscopic model of the actin-myosin interaction in muscular contractions. Phys. Rev. E 69, 011108 (2004)

    Article  ADS  Google Scholar 

  27. Swanson, B., Brozik, J.A., Love, S.P., Strouse, G.F., Shreve, A.P., Bishop, A.R., Wang, W. Z. , Salkola, M.I.: Observation of intrinsically localized modes in a discrete low-dimensional material. Phys. Rev. Lett. 82, 3288–3291 (1999)

    Article  ADS  Google Scholar 

  28. Joyeux, M., Grebenshchikov, S. Yu., Bredenbeck, J., Schinke, R., Farantos, S.C.: Intramolecular dynamics along isomerization and dissociation pathways, in geometrical structures of phase space in multi-dimensional chaos. Adv. Chem. Phys. 130, 267–303 (2005)

    Article  Google Scholar 

  29. Schwarz, U.T., English, L.Q., Sievers, A.J.: Experimental generation and observation of intrinsic localized spin wave modes in an antiferromagnet. Phys. Rev. Lett. 83, 223–226 (1999)

    Article  ADS  Google Scholar 

  30. English, L.Q., Sato, M., Sievers, A.J.: Nanoscale intrinsic localized modes in an antiferromagnetic lattice. J. Appl. Phys. 89, 6707 (2001)

    Article  ADS  Google Scholar 

  31. Trias, E., Mazo, J.J., Orlando, T.P.: Discrete breathers in nonlinear lattices: experimental detection in a Josephson array. Phys. Rev. Lett. 84, 741–744 (2000)

    Article  ADS  Google Scholar 

  32. Binder, P., Abraimov, D., Ustinov, A.V., Flach, S., Zolotaryuk, Y.: Observation of breathers in Josephson ladders. Phys. Rev. Lett. 84, 745–748 (2000)

    Article  ADS  Google Scholar 

  33. Xie, A., Van der Meer, L., Hof, W., Austin, R.H.: Long-lived amide I vibrational modes in myoglobin. Phys. Rev. Lett. 84, 5435–5438 (2000)

    Article  ADS  Google Scholar 

  34. Kavitha, L., Saravanan, M., Srividya, B., Gopi, D.: Breatherlike electromagnetic wave propagation in an antiferromagnetic medium with Dzyaloshinsky–Moriya interaction. Phys. Rev. E 84, 066608 (2011)

    Article  ADS  Google Scholar 

  35. Pnevmatikos, St., Savin, A.V., Zolotaryuk, A.V., Kivshar, Yu.S., Velgakis, M.J.: Nonlinear transport in hydrogen-bonded chains: free solitonic excitations. Phys. Rev. A 43, 5518–5536 (1991)

    Article  ADS  Google Scholar 

  36. Zolotaryuk, A.V., Maniadis, P., Tsironis, G.P.: Discrete gap breathers in chains with strong hydrogen bonding. Physica B 296, 251–258 (2001)

    Article  ADS  Google Scholar 

  37. Khalack, J.M., Velgakis, M.J.: Orientational discrete breathers in hydrogen-bonded chains. Phys. Rev. E 65, 046604 (2002)

    Article  ADS  Google Scholar 

  38. Cisneros-Ake, L.A., Minzoni, A.A.: Effect of hydrogen bond anharmonicity on supersonic discrete Davydov soliton propagation. Phys. Rev. E 85, 021925 (2012)

    Article  ADS  Google Scholar 

  39. Pouthier, V.: Two-polaron energy diffusion in a one-dimensional lattice of hydrogen bounded peptide units. Physica D 237, 106–118 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Pnevmatikos, St., Kivshar, Yu.S., Velgakis, M.J., Zolotaryuk, A.V.: Breathers in hydrogen-bonded chains. Phys. Lett. A 173, 43–52 (1993)

    Article  ADS  Google Scholar 

  41. Maniadis, P., Alexandrov, B.S., Bishop, A.R., Rasmussen, K.Ø.: Feigenbaum cascade of discrete breathers in a model of DNA. Phys. Rev. E 83, 011904 (2011)

    Article  ADS  Google Scholar 

  42. Hoogeboom, C., Theocharis, G., Kevrekidis, P.G.: Discrete breathers at the interface between a diatomic and a monoatomic granular chain. Phys. Rev. E 82, 061303 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  43. Ibañes, M., Sancho, J.M., Tsironis, G.P.: Dynamical properties of discrete breathers in curved chains with first and second neighbor interactions. Phys. Rev. E 65, 041902 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  44. Kavitha, L., Jayanthi, S., Muniyappan, A., Gopi, D.: Protonic transport through solitons in hydrogen-bonded systems. Phys. Scr. 84, 035803 (2011)

    Article  ADS  Google Scholar 

  45. Tokunaga, M., Matsubara, T.: Theory of ferroelectric phase transition in KH2PO4 type crystals. I. Prog. Theor. Phys. 35, 581–599 (1966)

    Article  ADS  Google Scholar 

  46. Holstein, T., Primakoff, H.: Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098–1113 (1940)

    Article  ADS  MATH  Google Scholar 

  47. Daniel, M., Kavitha, L., Amuda, R.: Soliton spin excitations in an anisotropic Heisenberg ferromagnet with octupole-dipole interaction. Phys. Rev. B 59, 13774–13781 (1999)

    Article  ADS  Google Scholar 

  48. Daniel, M., Kavitha, L.: Localized spin excitations in an anisotropic Heisenberg ferromagnet with Dzyaloshinskii–Moriya interactions. Phys. Rev. B 63, 172302(1–4) (2001)

    Article  ADS  Google Scholar 

  49. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  50. Zakharov, V.E., Ostrovsky, L.A.: Modulation instability: the beginning. Physica D 238, 540–548 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Sedletsky, Y.V.: A new type of modulation instability of Stokes waves in the framework of an extended NSE system with mean flow. J. Phys., A, Math. Gen. 39, L529–L537 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  52. Centurion, M., Porter, M.A., Pu, Ye., Kevrekidis, P.G., Frantzeskakis, D.J., Psaltis, D.: Modulational instability in nonlinearity-managed optical media. Phys. Rev. A 75, 063804 (2007)

    Article  ADS  Google Scholar 

  53. Vicencio, R.A., Brand, J. Flach, S.: Fano blockade by a Bose–Einstein condensate in an optical lattice. Phys. Rev. Lett. 98, 184102 (2007)

    Article  ADS  Google Scholar 

  54. Molina, M.I., Vicencio, R.A., Kivshar, Y.S.: Two-color discrete localized modes and resonant scattering in arrays of nonlinear quadratic optical waveguides. Phys. Rev. E 72, 036622 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  55. Davydov, A.S.: Solitons in Molecular Systems. Reidel, Dordrecht (1987)

    Google Scholar 

  56. Dauxois, T., Peyrard, M., Bishop, A.R.: Entropy-driven DNA denaturation. Phys. Rev. E 47, R44–R47 (1993)

    Article  ADS  Google Scholar 

  57. Feldman, A.B., Chernyak, Y.B., Cohen, R.J.: Wave-front propagation in a discrete model of excitable media. Phys. Rev. E 57, 7025–7040 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  58. Bell, J.: In: Brown, K.J., Larey, A.A (eds.) Reaction–Diffusion Equations. Clarendon, Oxford (1990)

    Google Scholar 

  59. Ochab-Marcinek, A., Schmid, G., Goychuk, I., Hänggi, P.: Noise-assisted spike propagation in myelinated neurons. Phys. Rev. E 79, 011904 (2009)

    Article  ADS  Google Scholar 

  60. Roncaglia, R., Tsironis, G.P.: Discrete quantum motors. Phys. Rev. Lett. 81, 10–13 (1998)

    Article  ADS  Google Scholar 

  61. Ponomarev, A.V., Denisov, S., Hänggi, P.: ac-Driven atomic quantum motor. Phys. Rev. Lett. 102, 230601 (2009)

    Article  ADS  Google Scholar 

  62. Lai, R., Sievers, A.J.: Nonlinear nanoscale localization of magnetic excitations in atomic lattices. Phys. Rep. 314, 147–236 (1999)

    Article  ADS  Google Scholar 

  63. Bejot, P., Kibler, B., Hertz, E., Lavorel, B., Faucher, O.: General approach to spatiotemporal modulational instability processes. Phys. Rev. A 83, 013830 (2011)

    Article  ADS  Google Scholar 

  64. Xiang, Y., Wen, S., Dai, X., Fan, D.: Modulation instability in nonlinear oppositely directed coupler with a negative-index metamaterial channel. Phys. Rev. E 82, 056605 (2010)

    Article  ADS  Google Scholar 

  65. Tian, Q., Wu, L., Zhang, J.-F., Malomed, B.A., Mihalache, D., Liu, W.M.: Exact soliton solutions and their stability control in the nonlinear Schrödinger equation with spatiotemporally modulated nonlinearity. Phys. Rev. E 83, 016602 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  66. Misra, A.P., Shukla, P.K.: Stability and evolution of wave packets in strongly coupled degenerate plasmas. Phys. Rev. E 85, 026409 (2012)

    Article  ADS  Google Scholar 

  67. Erkintalo, M., Hammani, K., Kibler, B., Finot, C., Akhmediev, N., Dudley, J.M., Genty, G.: Higher-order modulation instability in nonlinear fiber optics. Phys. Rev. Lett. 107, 253901 (2011)

    Article  ADS  Google Scholar 

  68. Hung, N.V., Zin, P., Trippenbach, M., Malomed, B.A.: Two-dimensional solitons in media with stripe-shaped nonlinearity modulation. Phys. Rev. E 82, 046602 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  69. Assanto, G., Cisneros, L.A., Minzoni, A.A., Skuse, B.D., Smyth, N.F., Worthy, A.L.: Soliton steering by longitudinal modulation of the nonlinearity in waveguide arrays. Phys. Rev. Lett. 104, 053903 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors, L. K., gratefully acknowledges the financial support from UGC, NBHM, India, in the form of major research projects, BRNS, India, in the form of a Young Scientist Research Award and ICTP, Italy, for a Junior Associateship. A. M. gratefully acknowledges UGC for the Rajiv Gandhi National Fellowship. This research work was partially supported by Serbian Ministry of Education and Sciences (grant III45010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Kavitha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavitha, L., Muniyappan, A., Prabhu, A. et al. Nano breathers and molecular dynamics simulations in hydrogen-bonded chains. J Biol Phys 39, 15–35 (2013). https://doi.org/10.1007/s10867-012-9283-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-012-9283-7

Keywords

Navigation