Skip to main content
Log in

Methionine and homocysteine modulate the rate of ROS generation of isolated mitochondria in vitro

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Dietary methionine restriction and supplementation in mammals have beneficial (antiaging) and detrimental effects respectively, which have been related to chronic modifications in the rate of mitochondrial ROS generation. However it is not known if methionine or its metabolites can have, in addition, direct effects on the rate of mitochondrial ROS production. This is studied here for the methionine cycle metabolites S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), homocysteine and methionine itself in isolated rat liver, kidney, heart, and brain mitochondria. The results show that methionine increases ROS production in liver and kidney mitochondria, homocysteine increases it in kidney and decreases it in the other three organs, and SAM and SAH have no effects. The variations in ROS production are localized at complexes I or III. These changes add to previously described chronic effects of methionine restriction and supplementation in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barja G, Herrero A (1998) J Bioenerg Biomembr 30:235–243

    Article  CAS  Google Scholar 

  • Bishop NA, Guarente L (2007) Nature Rev Genet 8:875–844

    Article  Google Scholar 

  • Boveris A, Cadenas E, Stoppani OM (1976) Biochem J 156:435–444

    CAS  Google Scholar 

  • Caro P, Gomez J, Lopez-Torres M, Sanchez I, Naudi A, Jove M, Pamplona R, Barja G (2008) Biogerontology 9:183–196

    Article  CAS  Google Scholar 

  • Caro P, Gomez J, Sanchez I, Naudi A, Ayala V, Lopez-Torres M, Pamplona R, Barja G (2009a) Rejuvenation Res 12:421–434

    Article  CAS  Google Scholar 

  • Caro P, Gómez J, Sanchez I, Garcia R, López-Torres M, Naudí A, Portero-Otin M, Pamplona R, Barja G (2009b) Biogerontology 10:579–592

    Article  CAS  Google Scholar 

  • Carr SM, Munro S, Kessler B, Oppermann U, La Thangue NB (2011) EMBO J 30:317–327

    Google Scholar 

  • Chang L, Zhao J, Xu J, Jiang W, Tang CS, Qi YF (2004) Clin Exp Pharmacol Physiol 31:237–243

    Article  CAS  Google Scholar 

  • Chen CL, Zhang L, Yeh A, Chen CA, Green-Church KB, Zweier JL, Chen YR (2007) Biochemistry 46:5754–5765

    Article  CAS  Google Scholar 

  • Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Science 325:201–204

    Article  CAS  Google Scholar 

  • Dever JT, Elfarra AA (2008) J Pharmacol Exp Therap 326:309–317

    Article  Google Scholar 

  • Devlin AM, Arning E, Bottiglieri T, Faraci FM, Rozen R, Lentz SR (2004) Blood 103:2624–2629

    Article  CAS  Google Scholar 

  • Durand P, Prost M, Loreau N, Lussier-Cacan S, Blacke D (2001) Lab Invest 81:645–672

    Article  CAS  Google Scholar 

  • Finkelstein JD, Martin JJ (1986) J Biol Chem 261:1582–1587

    CAS  Google Scholar 

  • Forner F, Kumar C, Luber CA, Fromme T, Klingenspor M, Mann M (2009) Cell Metab 10:324–335

    Article  CAS  Google Scholar 

  • Gomez J, Caro P, Naudi A, Portero-Otin M, Pamplona R, Barja G (2007) Biogerontology 8:555–566

    Article  CAS  Google Scholar 

  • Gomez J, Caro P, Sanchez I, Naudi A, Jove M, Portero-Otin M, Lopez-Torres M, Pamplona R, Barja G (2009) J Bioenerg Biomembr 41:309–321

    Article  CAS  Google Scholar 

  • Gredilla R, Barja G (2005) Endocrinology 146:3713–3717

    Article  CAS  Google Scholar 

  • Gredilla R, Sanz A, Lopez-Torres M, Barja G (2001a) FASEB J 15:1589–1591

    CAS  Google Scholar 

  • Gredilla R, Barja G, Lopez-Torres M (2001b) J Bioenerg Biomembr 33:279–287

    Article  CAS  Google Scholar 

  • Harper AE (1968) Am J Clin Nutr 21:358–366

    CAS  Google Scholar 

  • Harper AE, Benevenga NJ, Wohlhueter RM (1970) Physiol Rev 50:428–558

    CAS  Google Scholar 

  • Hidiroglou N, Gilani GS, Long L, Zhao X, Madere R, Cockell K, Belonge B, Ratnayake WM, Peace R (2004) J Nutr Biochem 15:730–740

    Article  CAS  Google Scholar 

  • Huang JY, Hirschey MD, Shimazu T, Verdin E (2010) Biochim Biophys Acta 1804:1645–1651

    CAS  Google Scholar 

  • Hurd TR, Costa NJ, Dahm CC, Beer SM, Brown SE, Filipovska A, Murphy MP (2005) Antioxid Redox Signal 7:999–1010

    Article  CAS  Google Scholar 

  • Iwasaki K, Gleiser CA, Masoro EJ, McMahan CA, Seo EJ, Yu BP (1988) J Gerontol 43:B13–21

    CAS  Google Scholar 

  • Ke XD, Foucault-Bertaud A, Genovesio C, Dignat-George F, Lamy E, Charpiot P (2010) Mol Cell Biochem 335:203–210

    Article  CAS  Google Scholar 

  • Khorakova M, Deil Z, Khausman D, Matsek K (1990) Fiziol Zh 36:16–21

    CAS  Google Scholar 

  • Kumagai H, Katoh S, Hirosawa K, Kimura M, Hishida A, Ikegaya N (2002) Kidney Int 62:1219–2128

    Article  CAS  Google Scholar 

  • Lai JC, Clark JB (1979) Methods Enzymol 55:51–60

    Article  CAS  Google Scholar 

  • Lambert AJ, Boysen HM, Buckingham JA, Yang T, Podlutsky A, Austad SN, Kunz TH, Buffenstein R, Brand MD (2007) Aging Cell 6:607–618

    Article  CAS  Google Scholar 

  • Lopez-Torres M, Barja G (2008a) In: Miwa S, Beckman KB, Muller FL (eds) Oxidative stress in aging. from model systems to human diseases: mitochondrial free radical production and caloric restriction: implications in vertebrate longevity and aging. Humana Press, pp 149–162

    Google Scholar 

  • Lopez-Torres M, Barja G (2008b) Biochim Biophys Acta 1780:1337–1347

    CAS  Google Scholar 

  • Mair W, Piper MD, Partridge L (2005) PLoS Biol 3:e223

    Article  Google Scholar 

  • Mela L, Seitz S (1979) Methods Enzymol 55:39–46

    Article  CAS  Google Scholar 

  • Melse-Boonstra A, Holm PI, Ueland PM, Olthof M, Clarke R, Verhoef P (2005) Am J Clin Nutr 81:1378–1382

    CAS  Google Scholar 

  • Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M (2005) Aging Cell 4:119–125

    Article  CAS  Google Scholar 

  • Min KJ, Tatar M (2006) Mech Ageing Dev 127:643–646

    Article  CAS  Google Scholar 

  • Mori N, Hirayama K (2000) J Nutr 130:2349–2355

    CAS  Google Scholar 

  • Ninomiya T, Kiyohara Y, Kubo M, Tanizaki Y, Tanak K, Okubo K, Nakamura H, Hata J, Oishi Y, Kato I, Hirakata H, Lida M (2004) Am J Kidney Dis 44:437–445

    Google Scholar 

  • Orentreich N, Matias JR, DeFelice A, Zimmerman JA (1993) J Nutr 123:269–274

    CAS  Google Scholar 

  • Pamplona R, Barja G (2006) Biochim Biophys Acta 1757:496–508

    Article  CAS  Google Scholar 

  • Pamplona R, Barja G (2007) Aging Res Rev 6:189–210

    Article  CAS  Google Scholar 

  • Pamplona R, Barja G, Portero-Otín M (2002) Ann N Y Acad Sci 959:475–490

    Article  CAS  Google Scholar 

  • Park SK, Prolla TA (2005) Aging Res Rev 4:55–65

    Article  CAS  Google Scholar 

  • Park CM, Cho CW, Rosenfeld ME, Song YS (2008) J Med Food 11:667–674

    Article  CAS  Google Scholar 

  • Regina M, Korhonen VP, Smith TK, Alakuijala L, Eloranta TO (1993) Arch Biochem Biophys 300:598–607

    Article  CAS  Google Scholar 

  • Richie JP Jr, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA (1994) FASEB J 8:1302–1307

    CAS  Google Scholar 

  • Robert KA, Brunet-Rossinni A, Bronikowski AM (2007) Aging Cell 6:395–404

    Article  CAS  Google Scholar 

  • Sanz A, Barja G (2006) In: Conn M (ed) Handbook of models for human aging: estimation of the rate of production of oxygen free radicals by mitochondria. Academic Press, pp 183–189

  • Sanz A, Caro P, Barja G (2004) J Bioenerg Biomembr 36:545–552

    Article  CAS  Google Scholar 

  • Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G (2006a) FASEB J 20:1064–1073

    Article  CAS  Google Scholar 

  • Sanz A, Caro P, Sanchez J, Barja G (2006b) Ann N Y Acad Sci 1067:200–209

    Article  CAS  Google Scholar 

  • Sanz A, Gomez J, Caro P, Barja G (2006c) J Bioenerg Biomembr 38:327–333

    Article  CAS  Google Scholar 

  • Shimokawa I, Higami Y, Yu BP, Masoro EJ, Ikeda T (1996) Aging (Milano) 8:254–262

    CAS  Google Scholar 

  • Stipanuk MH (2004) Rev Nutr 24:539–577

    CAS  Google Scholar 

  • Sun L, Akha AAS, Miller RA, Harper JM (2009) J Gerontol 64A:711–722

    CAS  Google Scholar 

  • Taylor ER, Hurrell F, Shannon RJ, Lin TK, Hirst J, Murphy MP (2003) J Biol Chem 278:19603–19610

    Article  CAS  Google Scholar 

  • Toborek M, Kopiecna-Grzebienak E, Drózdz M, Wieczorek M (1996) Nutrition 12:534–537

    Article  CAS  Google Scholar 

  • Troen AM, Lutgens E, Smith DE, Rosenberg IH, Selhub J (2003) Proc Natl Acad Sci USA 100:15089–15094

    Article  CAS  Google Scholar 

  • Troen AM, French EE, Roberts JF, Selhub J, Ordovas JM, Parnell LD, Lai CQ (2007) Age 29:29–39

    Article  CAS  Google Scholar 

  • Tyagi N, Sedoris KC, Steed M, Ovechkin AV, Moshal KS, Tyagi SC (2005) Am J Physiol Heart Circ Physiol 289:H2649–H2656

    Article  CAS  Google Scholar 

  • Velez-Carrasco W, Merkel M, Twiss CO, Smith JD (2008) J Nutr Biochem 19:362–370

    Article  CAS  Google Scholar 

  • Verhoef P, van Vliet T, Olthof MR, Katan MB (2005) Am J Clin Nutr 82:553–558

    CAS  Google Scholar 

  • Zhu WG, Li S, Lin LQ, Yan H, Fu T, Zhu JH (2009) Cell Immunol 254:110–116

    Article  CAS  Google Scholar 

  • Zimmerman JA, Malloy V, Krajcik R, Orentreich N (2003) Exp Gerontol 38:47–52

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Barja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomez, J., Sanchez-Roman, I., Gomez, A. et al. Methionine and homocysteine modulate the rate of ROS generation of isolated mitochondria in vitro. J Bioenerg Biomembr 43, 377–386 (2011). https://doi.org/10.1007/s10863-011-9368-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-011-9368-1

Keywords

Navigation