Skip to main content
Log in

Effect of 8.5% and 25% caloric restriction on mitochondrial free radical production and oxidative stress in rat liver

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Previous studies have consistently shown that 40% caloric restriction (CR) decreases the rate of mitochondrial ROS production and steady-state levels of markers of oxidative damage to macromolecules including mitochondrial DNA. However, few investigations have studied whether these changes also occur in lower CR regimes. This is of potential interest since moderate levels of dietary restriction are more practicable for humans. In this investigation male Wistar rats were subjected to 8.5% and 25% caloric restriction. Neither 8.5% nor 25% CR changed mitochondrial ROS production, oxygen consumption or mtDNA oxidative damage in rat liver mitochondria. However, both 8.5% and 25% CR significantly decreased the five different markers of protein oxidation, glycoxidation and lipoxidation measured, aminoadipic and glutamic semialdehyde, carboxyethyl-lysine, carboxymethyl-lysine, and malondialdehyde-lysine. The fatty acid composition of liver mitochondria was also affected and led to a moderate decrease in the degree of membrane unsaturation in both 8.5% and 25% CR. While 8.5% CR only affected complex I concentration (which was decreased), 25% CR decreased complexes I and IV and increased complexes II and III of the respiratory chain. Apoptosis-inducing factor (AIF) significantly decreased in 25% CR but not in 8.5% CR. The results show that moderate levels of caloric restriction can have beneficial effects including decreases in oxidative protein modification and a lower sensitivity of membranes to lipid peroxidation, in association with a reprogramming of the respiratory chain complexes and AIF content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AASA:

Aminoadipic semialdehyde in proteins

CEL:

Carboxyethyl-lysine in proteins

CML:

Carboxymethyl-lysine in proteins

DBI:

Double bond index

GSA:

Glutamic semialdehyde in proteins

MDAL:

Malondialdehyde-lysine in proteins

MtDNA:

Mitochondrial DNA

8-oxodG:

8-oxo-7,8-dihydro-2′-deoxyguanosine

ROS:

Reactive oxygen species

References

  • Asunción JG, Millan A, Pla R, Bruseghini L, Esteras A, Pallardo FV, Sastre J, Viña J (1996) Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. FASEB J 10:333–338

    PubMed  Google Scholar 

  • Ayala V, Naudí A, Sanz A, Caro P, Portero-Otin M, Barja G, Pamplona R (2007) Dietary protein restriction decreases oxidative protein damage, peroxidizability index, and mitochondrial complex I content in rat liver. J Gerontol In press

  • Barja G (2002) The quantitative measurement of H2O2 generation in isolated mitochondria. J Bioenerg Biomembr 34:227–233

    Article  PubMed  CAS  Google Scholar 

  • Barja G (2004) Aging in vertebrates and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism?. Biol Reviews 79:235–251

    Article  Google Scholar 

  • Barja G, Herrero A (1998) Localization at complex I and mechanism of the higher free radical production of brain non-synaptic mitochondria in the short-lived rat than in the longevous pigeon. J Bioenerg Biomembr 30:235–243

    Article  PubMed  CAS  Google Scholar 

  • Boveris A, Cadenas E, Stoppani OM (1976) Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 156:435–444

    PubMed  CAS  Google Scholar 

  • Bielski BHJ, Arudi RI, Sutherland MW (1983) A study of the reactivity of OH2/O2.- with unsaturated fatty acids. J Biol Chem 258:4759–4761

    PubMed  CAS  Google Scholar 

  • Cuervo AM, Bergamini E, Brunk UT, Droge W, Ffrench M, Terman A (2005) Autophagy and aging: the importance of maintaining “clean” cells. Autophagy 1:131–140

    PubMed  Google Scholar 

  • Dhabi JM, Mote PL, Wingo J, Rowley BC, Cao SX, Walford RL, Spindler SR (2001) Caloric restriction alters the feeding response of key metabolic enzyme genes. Mech Ageing Dev 122:1033–1048

    Article  Google Scholar 

  • Genova ML, Ventura B, Giulano G, Bovina C, Formiqqini G, Parenti Castelli G, Lenaz G (2001) The site of production of superoxide radical in mitochondrial Complex I is not a bound ubisemiquinone but presumably iron-sulphur cluster N2. FEBS Lett. 505:364–368

    Article  PubMed  CAS  Google Scholar 

  • Gredilla R, Barja G, López-Torres M (2001) Effect of short-term caloric restriction on H2 O2 production and oxidative DNA damage in rat liver mitochondria, and location of the free radical source. J Bioenerg Biomembr 33:279–287

    Article  PubMed  CAS  Google Scholar 

  • Gredilla R, Barja G (2005) Caloric restriction, aging and oxidative stress. Endocrinology 146:3713–3717

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1972) The biological clock: the mitochondria?. J Am Geriatr Soc 20:145–147

    PubMed  CAS  Google Scholar 

  • Hulbert AJ (2005) On the importante of fatty acid composition of membranes for aging. J Theor Biol 234:277–288

    Article  PubMed  CAS  Google Scholar 

  • Koukova J, Guarente L (2003) How does caloric restriction work?. Genes Dev 17:313–321

    Article  CAS  Google Scholar 

  • Ku HH, Brunk UT, Sohal RS (1993). Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic Biol Med 15:621–627

    Article  PubMed  CAS  Google Scholar 

  • Latorre A, Moya A, Ayala A (1986) Evolution of mitochondrial DNA in Drosophila suboscura. PNAS USA 83:8649–8653

    Article  PubMed  CAS  Google Scholar 

  • Lee CK, Klopp RG, Weindruch R, Prolla TA (1999) Gene expression profile of aging and its retardation by caloric restriction. Science 285:1390–1393

    Article  PubMed  CAS  Google Scholar 

  • Loft S, Poulsen HE (1999) Markers of oxidative damage to DNA: antioxidants and molecular damage. Methods Enzymol 300:166–184

    Article  PubMed  CAS  Google Scholar 

  • Martin B, Mattson MP, Maudsley S (2006) Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Res Rev 5:332–353

    Article  PubMed  CAS  Google Scholar 

  • Modjtahedi N, Giordanetto F, Madeo F, Kroemer G (2006) Apoptosis-inducing factor: vital and lethal. Trends in Cell Biol 16:264–272

    Article  CAS  Google Scholar 

  • Pamplona R, Portero-Otín M, Bellmunt MJ, Gredilla R, Barja G (2002a) Aging increases Nepsilon-(Carboxymethyl)lysine and caloric restriction decreases Nepsilon-(Carboxyethyl)lysine and Nepsilon-(Malondialdehyde)lysine in rat heart mitochondrial proteins. Free Rad Res 36:47–54

    Article  CAS  Google Scholar 

  • Pamplona R, Portero-Otín M, Requena J, Gredilla R, Barja G (2002b) Oxidative, glycoxidative and lipoxidative damage to rat heart mitochondrial proteins is lower after four months of caloric restriction than in age-matched controls. Mech Ageing Dev 123:1437–1446

    Article  PubMed  CAS  Google Scholar 

  • Pamplona R, Barja G, Portero-Otín M (2002c) Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span. A homeoviscous-longevity adaptation?. Ann New York Acad Sci 959:475–490

    Article  CAS  Google Scholar 

  • Pamplona R, Dalfo E, Ayala V, Bellmunt MJ, Prat J, Ferrer I, Portero-Otin M (2005) Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. J Biol Chem 280:21522–21530

    Article  PubMed  CAS  Google Scholar 

  • Pamplona R, Barja G (2006) Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim Biophys Acta Bioenerg 1757:496–508

    Article  CAS  Google Scholar 

  • Porter AG, Urbano GL (2006) Does apoptosis-inducing factor (AIF) have both life and death functions in cells?. Bioesssays 28:834–843

    Article  CAS  Google Scholar 

  • Sanz A, Caro P, Barja G (2004) Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver. J Bioenerg Biomembr 36:545–552

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Gómez J, Caro P, Barja G (2006a) Carbohydrate restriction does not change mitochondrial free radical generation and oxidative DNA damage. J Bioenerg Biomembr 38:327–333

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Caro P, Gómez J, Barja G (2006b) Effect of Lipid Restriction on mitochondrial free radical production and oxidative DNA damage. Ann NY Acad Sci 1067:200–209

    Article  PubMed  CAS  Google Scholar 

  • Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G (2006c) Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J 20:1064–1073

    Article  PubMed  CAS  Google Scholar 

  • Scrofano MM, Shang F, Nowell TR Jr, Gong X, Smith DE, Kelliher M, Dunning J, Mura CV, Taylor A (1998) Aging, caloric restriction and ubiquitin-dependent proteolysis in the livers of Emory mice. Mech Ageing Dev 101:277–296

    Article  PubMed  CAS  Google Scholar 

  • Sell DR, Lane MA, Johnson WA, Masoro EJ, Mock OB, Reiser KM, Fogarty JF, Cutler RG, Ingram DK, Roth GS, Monnier VM (1996) Longevity and the genetic determination of collagen glycoxidation kinetics in mammalian senescence. PNAS 93:485–490

    Article  PubMed  CAS  Google Scholar 

  • Seo AY, Hofer T, Sung B, Judge S, Chung HY, Leeuwenburgh C (2006) Hepatic oxidative stress during aging. Effects of 8% long-term calorie restriction and lifelong exercise. Antiox Redox Sginal 8:529–538

    Article  CAS  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63

    Article  PubMed  CAS  Google Scholar 

  • Vahsen N, Candé C, Brière JJ, Bénit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schägger H, Rustin P, Kroemer G (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689

    Article  PubMed  CAS  Google Scholar 

  • Van Empel VP, Bertrand AT, van der Nagel R, Kostin S, Doevendans PA, Crijns HJ, de Wit E, Sluiter W, Ackerman SL, De Windt LJ (2005) Downregulation of apoptosis-inducing factor in harlequin mutant mice sensitizes the myocardium to oxidative stress-related cell death and pressure overload-induced decompensation. Circ Res 96:92–101

    Article  CAS  Google Scholar 

  • Weindruch R, Waldford RL (1988) The retardation of aging and disease by dietary restriction. Charles C. Thomas Springfield, IL

    Google Scholar 

Download references

Acknowledgements

This study was supported in part by I + D grants from the Spanish Ministry of Education and Science (BFU2006-14495/BFI), Spanish Ministry of Health (ISCIII, Red de Envejecimiento y Fragilidad, RD06/0013/0012), and the Generalitat of Catalunya (2005SGR00101) to R.P.; from the COST B35 Action, Spanish Ministry of Health (FIS 05-2241), Spanish Ministry of Education and Science (AGL2006-12433), and “La Caixa” Foundation to M.P.O.; and from the Spanish Ministry of Education and Science (BFU2005-02584) and from CAM/UCM groups (910521) to G.B.; A. Naudi received a predoctoral fellowship from “La Caixa” Foundation. P. Caro and J. Gómez received predoctoral fellowships from the Ministry of Education and Science. We thank David Argiles for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Barja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, J., Caro, P., Naudí, A. et al. Effect of 8.5% and 25% caloric restriction on mitochondrial free radical production and oxidative stress in rat liver. Biogerontology 8, 555–566 (2007). https://doi.org/10.1007/s10522-007-9099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-007-9099-1

Keywords

Navigation