Skip to main content
Log in

Development and application of aromatic [13C, 1H] SOFAST-HMQC NMR experiment for nucleic acids

  • Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Higher sensitivity of NMR spectrometers and novel isotopic labeling schemes have ushered the development of rapid data acquisition methodologies, improving the time resolution with which NMR data can be acquired. For nucleic acids, longitudinal relaxation optimization in conjunction with Ernst angle excitation (SOFAST-HMQC) for imino protons, in addition to rendering rapid pulsing, has been demonstrated to yield significant improvements in sensitivity per unit time. Extending such methodology to other spins offers a viable prospect to measure additional chemical shifts, thereby broadening their utilization for various applications. Here, we introduce the 2D [13C, 1H] aromatic SOFAST-HMQC that results in overall sensitivity gain of 1.4- to 1.7-fold relative to the conventional HMQC and can also be extended to yield long-range heteronuclear chemical shifts such as the adenine imino nitrogens N1, N3, N7 and N9. The applications of these experiments range from monitoring real-time biochemical processes, drug/ligand screening, and to collecting data at very low sample concentration and/or in cases where isotopic enrichment cannot be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Atreya HS, Szyperski T (2005) Rapid NMR data collection. Methods Enzymol 394:78–108. doi:10.1016/S0076-6879(05)94004-4

    Article  Google Scholar 

  • Atreya HS, Sathyamoorthy B, Jaipuria G, Beaumont V, Varani G, Szyperski T (2012) GFT projection NMR for efficient 1H/13C sugar spin system identification in nucleic acids. J Biomol NMR 54:337–342. doi:10.1007/s10858-012-9687-5

    Article  Google Scholar 

  • Barton S, Heng X, Johnson BA, Summers MF (2013) Database proton NMR chemical shifts for RNA signal assignment and validation. J Biomol NMR 55:33–46. doi:10.1007/s10858-012-9683-9

    Article  Google Scholar 

  • Brüschweiler R, Zhang F (2004) Covariance nuclear magnetic resonance spectroscopy. J Chem Phys 120:5253–5260. doi:10.1063/1.1647054

    Article  ADS  Google Scholar 

  • Buck J, Fürtig B, Noeske J, Wöhnert J, Schwalbe H (2007) Time-resolved NMR methods resolving ligand-induced RNA folding at atomic resolution. Proc Natl Acad Sci USA 104:15699–15704. doi:10.1073/pnas.0703182104

    Article  ADS  Google Scholar 

  • Buck J, Li Y-L, Richter C, Vergne J, Maurel M-C, Schwalbe H (2009) NMR spectroscopic characterization of the adenine-dependent hairpin ribozyme. ChemBioChem 10:2100–2110. doi:10.1002/cbic.200900196

    Article  Google Scholar 

  • Cavanagh J, Fairbrother WJ, Palmer AG III, Rance M, Skelton NJ (2006) Protein NMR spectroscopy. Academic Press, San Diego

    Google Scholar 

  • Cromsigt JAMTC, Hilbers CW, Wijmenga SS (2001) Prediction of proton chemical shifts in RNA—their use in structure refinement and validation. J Biomol NMR 21:11–29. doi:10.1023/A:1011914132531

    Article  Google Scholar 

  • Dayie K (2005) Resolution enhanced homonuclear carbon decoupled triple resonance experiments for unambiguous RNA structural characterization. J Biomol NMR 32:129–139. doi:10.1007/s10858-005-5093-6

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293. doi:10.1007/BF00197809

    Article  Google Scholar 

  • Deschamps M, Campbell ID (2006) Cooling overall spin temperature: protein NMR experiments optimized for longitudinal relaxation effects. J Magn Reson 178:206–211. doi:10.1016/j.jmr.2005.09.011

    Article  ADS  Google Scholar 

  • Dethoff EA, Chugh J, Mustoe AM, Al-Hashimi HM (2012) Functional complexity and regulation through RNA dynamics. Nature 482:322–330. doi:10.1038/nature10885

    Article  ADS  Google Scholar 

  • Eghbalnia HR, Bahrami A, Tonelli M, Hallenga K, Markley JL (2005) High-resolution iterative frequency identification for NMR as a general strategy for multidimensional data collection. J Am Chem Soc 127:12528–12536. doi:10.1021/ja052120i

    Article  Google Scholar 

  • Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimensions. Oxford University Press, London

    Google Scholar 

  • Farjon J, Boisbouvier J, Schanda P, Pardi A, Simorre J-P, Brutscher B (2009) Longitudinal-relaxation-enhanced NMR experiments for the study of nucleic acids in solution. J Am Chem Soc 131:8571–8577. doi:10.1021/ja901633y

    Article  Google Scholar 

  • Felli IC, Brutscher B (2009) Recent advances in solution NMR: fast methods and heteronuclear direct detection. ChemPhysChem 10:1356–1368. doi:10.1002/cphc.200900133

    Article  Google Scholar 

  • Frank AT, Bae S-H, Stelzer AC (2013a) Prediction of RNA 1H and 13C chemical shifts: a structure based approach. J Phys Chem B 117:13497–13506. doi:10.1021/jp407254m

    Article  Google Scholar 

  • Frank AT, Horowitz S, Andricioaei I, Al-Hashimi HM (2013b) Utility of 1H NMR chemical shifts in determining RNA structure and dynamics. J Phys Chem B 117:2045–2052. doi:10.1021/jp310863c

    Article  Google Scholar 

  • Frydman L, Scherf T, Lupulescu A (2002) The acquisition of multidimensional NMR spectra within a single scan. Proc Natl Acad Sci USA 99:15858–15862. doi:10.1073/pnas.252644399

    Article  ADS  Google Scholar 

  • Fürtig B, Richter C, Wöhnert J, Schwalbe H (2003) NMR spectroscopy of RNA. ChemBioChem 4:936–962. doi:10.1002/cbic.200300700

    Article  Google Scholar 

  • Gallego J, Varani G (2001) Targeting RNA with small-molecule drugs: therapeutic promise and chemical challenges. Acc Chem Res 34:836–843. doi:10.1021/ar000118k

    Article  Google Scholar 

  • Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141. doi:10.1016/0022-2364(91)90034-Q

    ADS  Google Scholar 

  • Giraud N, Beguin L, Courtieu J, Merlet D (2010) Nuclear magnetic resonance using a spatial frequency encoding: application to J-edited spectroscopy along the sample. Angew Chem Int Ed 49:3481–3484. doi:10.1002/anie.200907103

    Article  Google Scholar 

  • Hänsel R, Foldynová-Trantírková S, Löhr F, Buck J, Bongartz E, Bamberg E, Schwalbe H, Dötsch V, Trantírek L (2009) Evaluation of parameters critical for observing nucleic acids inside living Xenopus laevis oocytes by in-cell NMR spectroscopy. J Am Chem Soc 131:15761–15768. doi:10.1021/ja9052027

    Article  Google Scholar 

  • Hansen AL, Nikolova EN, Casiano-Negroni A, Al-Hashimi HM (2009) Extending the range of microsecond-to-millisecond chemical exchange detected in labeled and unlabeled nucleic acids by selective carbon R1ρ NMR spectroscopy. J Am Chem Soc 131:3818–3819. doi:10.1021/ja8091399

    Article  Google Scholar 

  • Hiller S, Fiorito F, Wüthrich K, Wider G (2005) Automated projection spectroscopy (APSY). Proc Natl Acad Sci USA 102:10876–10881. doi:10.1073/pnas.0504818102

    Article  ADS  Google Scholar 

  • Hyberts SG, Milbradt AG, Wagner AB, Arthanari H, Wagner G (2012) Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling. J Biomol NMR 52:315–327. doi:10.1007/s10858-012-9611-z

    Article  Google Scholar 

  • Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125:1385–1393. doi:10.1021/ja028197d

    Article  Google Scholar 

  • Kovacs H, Moskau D, Spraul M (2005) Cryogenically cooled probes a leap in NMR technology. Prog Nucl Magn Reson Spectrosc 46:131–155. doi:10.1016/j.pnmrs.2005.03.001

    Article  Google Scholar 

  • Krähenbühl B, Hofmann D, Maris C, Wider G (2012) Sugar-to-base correlation in nucleic acids with a 5D APSY-HCNCH or two 3D APSY-HCN experiments. J Biomol NMR 52:141–150. doi:10.1007/s10858-011-9588-z

    Article  Google Scholar 

  • Kupče Ē, Freeman R (1994) Wideband excitation with polychromatic pulses. J Magn Reson Ser A 108:268–273. doi:10.1006/jmra.1994.1123

    Article  ADS  Google Scholar 

  • Kupče Ē, Freeman R (1996) Optimized adiabatic pulses for wideband spin inversion. J Magn Reson Ser A 118:299–303. doi:10.1006/jmra.1996.0042

    Article  ADS  Google Scholar 

  • Kupče Ē, Freeman R (2003) Fast multi-dimensional Hadamard spectroscopy. J Magn Reson 163:56–63. doi:10.1016/S1090-7807(03)00036-3

    Article  ADS  Google Scholar 

  • Kupče Ē, Freeman R (2004) Projection–reconstruction technique for speeding up multidimensional NMR spectroscopy. J Am Chem Soc 126:6429–6440. doi:10.1021/ja049432q

    Article  Google Scholar 

  • Lee M-K, Gal M, Frydman L, Varani G (2010) Real-time multidimensional NMR follows RNA folding with second resolution. Proc Natl Acad Sci USA 107:9192–9197. doi:10.1073/pnas.1001195107

    Article  ADS  Google Scholar 

  • Li M-H, Wang Z-F, Kuo MH-J, Hsu S-TD, Chang T-C (2014) Unfolding kinetics of human telomeric G-quadruplexes studied by NMR spectroscopy. J Phys Chem B 118:931–936. doi:10.1021/jp410034d

    Article  Google Scholar 

  • Lieblein AL, Buck J, Schlepckow K, Fürtig B, Schwalbe H (2012) Time-resolved NMR spectroscopic studies of DNA i-motif folding reveal kinetic partitioning. Angew Chem Int Ed 51:250–253. doi:10.1002/anie.201104938

    Article  Google Scholar 

  • Maciejewski MW, Fenwick M, Schuyler AD, Stern AS, Gorbatyuk V, Hoch JC (2011) Random phase detection in multidimensional NMR. Proc Natl Acad Sci USA 108:16640–16644. doi:10.1073/pnas.1103723108

    Article  ADS  Google Scholar 

  • Manoharan V, Fürtig B, Jäschke A, Schwalbe H (2009) Metal-induced folding of diels–alderase ribozymes studied by static and time-resolved NMR spectroscopy. J Am Chem Soc 131:6261–6270. doi:10.1021/ja900244x

    Article  Google Scholar 

  • Mayzel M, Rosenlöw J, Isaksson L, Orekhov V (2014) Time-resolved multidimensional NMR with non-uniform sampling. J Biomol NMR 58:129–139. doi:10.1007/s10858-013-9811-1

    Article  Google Scholar 

  • Mishkovsky M, Frydman L (2009) Principles and progress in ultrafast multidimensional nuclear magnetic resonance. Annu Rev Phys Chem 60:429–448. doi:10.1146/annurev.physchem.040808.090420

    Article  ADS  Google Scholar 

  • Mobli M, Maciejewski MW, Schuyler AD, Stern AS, Hoch JC (2012) Sparse sampling methods in multidimensional NMR. Phys Chem Chem Phys 14:10835–10843. doi:10.1039/C2CP40174F

    Article  Google Scholar 

  • Parish DM, Szyperski T (2008) Simultaneously cycled NMR spectroscopy. J Am Chem Soc 130:4925–4933. doi:10.1021/ja711454e

    Article  Google Scholar 

  • Pervushin K, Vögeli B, Eletsky A (2002) Longitudinal 1H relaxation optimization in TROSY NMR spectroscopy. J Am Chem Soc 124:12898–12902. doi:10.1021/ja027149q

    Article  Google Scholar 

  • Piotto M, Saudek V, Sklenář V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2:661–665. doi:10.1007/BF02192855

    Article  Google Scholar 

  • Reining A, Nozinovic S, Schlepckow K, Buhr F, Furtig B, Schwalbe H (2013) Three-state mechanism couples ligand and temperature sensing in riboswitches. Nature 499:355–359. doi:10.1038/nature12378

    Article  ADS  Google Scholar 

  • Rennella E, Brutscher B (2013) Fast real-time NMR methods for characterizing short-lived molecular states. ChemPhysChem 14:3059–3070. doi:10.1002/cphc.201300339

    Article  Google Scholar 

  • Ross A, Salzmann M, Senn H (1997) Fast-HMQC using Ernst angle pulses: an efficient tool for screening of ligand binding to target proteins. J Biomol NMR 10:389–396. doi:10.1023/A:1018361214472

    Article  Google Scholar 

  • Rovnyak D, Frueh DP, Sastry M, Sun Z-YJ, Stern AS, Hoch JC, Wagner G (2004) Accelerated acquisition of high resolution triple-resonance spectra using non-uniform sampling and maximum entropy reconstruction. J Magn Reson 170:15–21. doi:10.1016/j.jmr.2004.05.016

    Article  ADS  Google Scholar 

  • Sahakyan AB, Vendruscolo M (2013) Analysis of the contributions of ring current and electric field effects to the chemical shifts of RNA bases. J Phys Chem B 117:1989–1998. doi:10.1021/jp3057306

    Article  Google Scholar 

  • Sathyamoorthy B, Parish DM, Montelione GT, Xiao R, Szyperski T (2014) Spatially selective heteronuclear multiple-quantum coherence spectroscopy for biomolecular NMR studies. ChemPhysChem 15:1872–1879. doi:10.1002/cphc.201301232

    Article  Google Scholar 

  • Schanda P, Brutscher B (2005) Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J Am Chem Soc 127:8014–8015. doi:10.1021/ja051306e

    Article  Google Scholar 

  • Schanda P, Kupče Ē, Brutscher B (2005) SOFAST-HMQC experiments for recording two-dimensional deteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR 33:199–211. doi:10.1007/s10858-005-4425-x

    Article  Google Scholar 

  • Schwalbe H, Buck J, Fürtig B, Noeske J, Wöhnert J (2007) Structures of RNA switches: insight into molecular recognition and tertiary structure. Angew Chem Int Ed 46:1212–1219. doi:10.1002/anie.200604163

    Article  Google Scholar 

  • Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64:547–552. doi:10.1016/0022-2364(85)90122-2

    ADS  Google Scholar 

  • Sklenár V, Peterson R, Rejante M, Feigon J (1994) Correlation of nucleotide base and sugar protons in a 15N-labeled HIV-1 RNA oligonucleotide by 1H–15N HSQC experiments. J Biomol NMR 4:117–122. doi:10.1007/BF00178339

    Google Scholar 

  • Sripakdeevong P, Cevec M, Chang AT, Erat MC, Ziegeler M, Zhao Q, Fox GE, Gao X, Kennedy SD, Kierzek R, Nikonowicz EP, Schwalbe H, Sigel RKO, Turner DH and Das R (2014) Structure determination of noncanonical RNA motifs guided by 1H NMR chemical shifts. Nat Methods 11. doi:10.1038/nmeth.2876

  • Stelzer AC, Frank AT, Kratz JD, Swanson MD, Gonzalez-Hernandez MJ, Lee J, Andricioaei I, Markovitz DM, Al-Hashimi HM (2011) Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble. Nat Chem Biol 7:553–559. doi:10.1038/nchembio.596

    Article  Google Scholar 

  • Szyperski T, Wider G, Bushweller JH, Wüthrich K (1993) Reduced dimensionality in triple-resonance NMR experiments. J Am Chem Soc 115:9307–9308. doi:10.1021/ja00073a064

    Article  Google Scholar 

  • Szyperski T, Yeh DC, Sukumaran DK, Moseley HNB, Montelione GT (2002) Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment. Proc Natl Acad Sci USA 99:8009–8014. doi:10.1073/pnas.122224599

    Article  ADS  Google Scholar 

  • Tal A, Frydman L (2010) Single-scan multidimensional magnetic resonance. Prog Nucl Magn Reson Spectrosc 57:241–292. doi:10.1016/j.pnmrs.2010.04.001

    Article  Google Scholar 

  • Vega-Vazquez M, Cobas JC, Martin-Pastor M (2010) Fast multidimensional localized parallel NMR spectroscopy for the analysis of samples. Magn Reson Chem 48:749–752. doi:10.1002/mrc.2659

    Article  Google Scholar 

  • Wenter P, Fürtig B, Hainard A, Schwalbe H, Pitsch S (2005) Kinetics of photoinduced RNA refolding by real-time NMR spectroscopy. Angew Chem Int Ed 44:2600–2603. doi:10.1002/anie.200462724

    Article  Google Scholar 

  • Werf RM, Tessari M, Wijmenga SS (2013) Nucleic acid helix structure determination from NMR proton chemical shifts. J Biomol NMR 56:95–112. doi:10.1007/s10858-013-9725-y

    Article  Google Scholar 

  • Wijmenga SS, Kruithof M, Hilbers CW (1997) Analysis of 1H chemical shifts in DNA: assessment of the reliability of 1H chemical shift calculations for use in structure refinement. J Biomol NMR 10:337–350. doi:10.1023/A:1018348123074

    Article  Google Scholar 

  • Xu X-P, Case DA (2001) Automated prediction of 15N, 13Cα, 13Cβ and 13C′ chemical shifts in proteins using a density functional database. J Biomol NMR 21:321–333. doi:10.1023/A:1013324104681

    Article  Google Scholar 

  • Ying J, Wang J, Grishaev A, Yu P, Wang Y-X, Bax A (2011) Measurement of 1H–15N and 1H–13C residual dipolar couplings in nucleic acids from TROSY intensities. J Biomol NMR 51:89–103. doi:10.1007/s10858-011-9544-y

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the US National Institute for General Medical Sciences (GM103297), National Institutes of Health (NIAID R01AI066975) and an Agilent Thought Leader Award. We thank Dr. Sven G. Hyberts for his discussions on sparse sampling approaches and reconstructing the reduced 2D NMR dataset. We thank Dr. Vivekanandan Subramanian and the Duke NMR center for maintenance and support of the NMR facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hashim Al-Hashimi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 952 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathyamoorthy, B., Lee, J., Kimsey, I. et al. Development and application of aromatic [13C, 1H] SOFAST-HMQC NMR experiment for nucleic acids. J Biomol NMR 60, 77–83 (2014). https://doi.org/10.1007/s10858-014-9856-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-014-9856-9

Keywords

Navigation