Skip to main content

Advertisement

Log in

Electric field-induced strains, conductivities and energy-storage properties in Na1/2Bi1/2TiO3–Ba(Mg1/3Nb2/3)O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, an electric field-induced giant strain response and electric displacement, as well as temperature-dependence dielectric, impedance and energy storage densities were studied in lead-free BNT-based ferroelectric system. The XRD analysis reveals that all the investigated ceramics have a pure perovskite structure. A maximum energy storage density up to 0.907 J/cm3 at 80 kV/cm is exhibited for (1−x) Na1/2Bi1/2TiO3xBa(Mg1/3Nb2/3)O3 ceramics at an x of 0.07. Follow-up experiments confirm that an electric-field-induced phase transition, which results in giant strain up to 0.12% at 10 Hz, is also the origin of initially weak piezoelectricity. After doping a certain amount of Ba(Mg1/3Nb2/3)O3, it is obvious that the dielectric peaks shift to low temperature and present dispersion characteristic. The increase in composition (x) can suppress grain conductivity heavily in high temperatures, thus gives a way how to adjust the nominal BNT composition for the reduction of leakage conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C.R. Zhou, X.Y. Liu, W.Z. Li, C.L. Yuan, Mater. Chem. Phys. 114, 832 (2009)

    Article  Google Scholar 

  2. Y. Hosono, K. Harada, Y. Yamashita, Jpn. J. Appl. Phys. 40, 5722 (2001)

    Article  Google Scholar 

  3. S.T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rodel, Appl. Phys. Lett. 91, 112906 (2007)

    Article  Google Scholar 

  4. S.T. Zhang, A.B. Kounga, E. Aulbach, T. Granzow, W. Jo, H.J. Kleebe, J. Rodel et al., J. Appl. Phys. 103, 034107 (2008)

    Article  Google Scholar 

  5. W. Jo, T. Granzow, Z. Aulbach, J. Rodel, J. Appl. Phys. 105, 094102 (2009)

    Article  Google Scholar 

  6. Q.R. Yao, F.F. Wang, F. Xu, C.M. Leung, T. Wang, Y.X. Tang, Acs. Appl. Mater. Interfaces 7, 5066 (2015)

    Article  Google Scholar 

  7. Q. Xu, T. Li, H. Hao, S. Zhang, Z. Wang, H.X. Liu, J. Eur. Ceram. Soc. 35(545), 545 (2015)

    Article  Google Scholar 

  8. J. Parui, S.B. Krupanidhi, Appl. Phys. Lett. 92, 192901 (2008)

    Article  Google Scholar 

  9. Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, H.H. Chong, Appl. Phys. Lett. 98, 012902 (2011)

    Article  Google Scholar 

  10. D. Schütz, M. Deluca, W. Kraus, A. Feteira, T. Jackson, K. Reichmann, Adv. Funct. Mater. 22, 2285 (2012)

    Article  Google Scholar 

  11. I. Levin, I.M. Reaney, Adv. Funct. Mater. 22, 3445 (2012)

    Article  Google Scholar 

  12. J. Zang, M. Li, D.S. Sinclair, F. Till, J. Wook, R. Jürgen, J. Am. Ceram. Soc. 97, 2825 (2014)

    Article  Google Scholar 

  13. D. Zhan, Q. Xu, D.P. Huang, H.X. Liu, W. Chen, F. Zhang, Phys. B 440, 67 (2014)

    Article  Google Scholar 

  14. M. Li, H. Zhang, S.N. Cook, L. Li, J.A. Kilner, I.M. Reaney et al., Chem. Mater. 27, 629 (2015)

    Article  Google Scholar 

  15. Y.W. Kim, J.H. Park, J.G. Park, J. Eur. Ceram. Soc. 24, 1775 (2004)

    Article  Google Scholar 

  16. M.Y. Chen, C.T. Chia, I.N. Lin, L.J. Lin, C.W. Ahn, S. Nahm, J. Eur. Ceram. Soc. 26, 1965 (2006)

    Article  Google Scholar 

  17. M. Li, M.J. Pietrowski, R.A.D. Souza, H. Zhang, L.M. Reaney, S.N. Cook et al., Nat. Mater. 13, 31 (2014)

    Article  Google Scholar 

  18. J.H. Paik, S. Nahm, J.D. Bylin, J. Mater. Sci. Lett. 17, 1777 (1998)

    Article  Google Scholar 

  19. B.J. Chu, D.R. Chen, G.R. Li, Q.R. Yin, J. Eur. Ceram. Soc. 22, 2115 (2002)

    Article  Google Scholar 

  20. W. Jo, R. Dittmer, M. Acosta, J.D. Zang, C. Groh, E. Sapper et al., J. Electroceram. 29, 71 (2012)

    Article  Google Scholar 

  21. S.E. Young, J.Y. Zhang, W. Hong, X. Tan, J. Appl. Phys. 113, 054101 (2013)

    Article  Google Scholar 

  22. R. Yimnirun, M.L. Eury, V. Sundar, P.J. Moses, S.J. Jang, R.E. Newnham, J. Eur. Ceram. Soc. 19, 1269 (1999)

    Article  Google Scholar 

  23. J. Kling, X. Tan, W. Jo, H.-J. Kleebe, H. Fuess, J. Rödel, J. Am. Ceram. Soc. 93, 2452 (2010)

    Article  Google Scholar 

  24. A.A. Bokov, Z.G. Ye, J. Mater. Sci. 41, 31 (2006)

    Article  Google Scholar 

  25. G.A. Samara, J. Phys.: Condens. Matter 15, R367 (2003)

    Google Scholar 

  26. Y. Li, F. Wang, X. Ye, Y. Xie, Y. Tang, D. Sun et al., J. Am. Ceram. Soc. 97, 3615 (2014)

    Article  Google Scholar 

  27. Z.Y. Cen, C.R. Zhou, Q. Zhou, H. Yang, X.J. Zhou, J. Cheng et al., Ceram. Int. 40, 10431 (2014)

    Article  Google Scholar 

  28. L. He, Z.Y. Ling, Appl. Phys. Lett. 98, 242112 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports of the National Natural Science Foundation of China (Grant Nos. 11464006, 51462005) and the Natural Science Foundation of Guangxi (Grant Nos. 2014GXNSFBA118254) are gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-hua Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yuan, CL., Liu, XY. et al. Electric field-induced strains, conductivities and energy-storage properties in Na1/2Bi1/2TiO3–Ba(Mg1/3Nb2/3)O3 ceramics. J Mater Sci: Mater Electron 28, 4788–4795 (2017). https://doi.org/10.1007/s10854-016-6124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6124-7

Keywords

Navigation