Skip to main content
Log in

Influence of the substrate temperature on the optical and electrical properties of Ga-doped ZnO thin films fabricated by pulsed laser deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ga-doped (5 wt%) zinc oxide (GZO) thin films were fabricated on corning 1737 substrates at a fixed oxygen pressure of 200 mTorr at various substrate temperatures (100–300 °C) by using pulsed laser deposition (PLD) in order to investigate the microstructure, optical, and electrical properties of the GZO thin films. It was observed that all the thin films exhibit c-axis orientation and exhibit only a (002) diffraction peak. The GZO thin film, which was fabricated at 200 mTorr and 300 °C, showed the highest (002) orientation, and the full width at half maximum (FWHM) of the (002) diffraction peak was 0.38°. The position of the XRD peak shifted to a higher angle with increase in the substrate temperature. The optical transmittance in the visible region was greater than 85%. The Burstein-Moss effect, which causes a shift toward a high photon energy level, was observed. The electrical property indicated that the highest carrier concentration (2.33 × 1021 cm−3) and the lowest resistivity (3.72 × 10−4 Ωcm) were obtained in the GZO thin film fabricated at 200 mTorr and 300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.J. Berry, D.S. Ginley, P.E. Burrows, Appl. Phys. Lett. 92, 193304 (2008). doi:10.1063/1.2917565

    Article  ADS  CAS  Google Scholar 

  2. B.D. Ann, S.H. Oh, D.U. Hong, D.H. Shin, A. Moujoud, H.J. Kim, Cryst. Growth 310, 3303–3307 (2008). doi:10.1016/j.jcrysgro.2008.04.014

    Article  ADS  CAS  Google Scholar 

  3. T. Nakada, Y. Ohkubo, A. Kunioka, D.B. Chrisey, Jpn. J. Appl. Phys. 30, 3344–3348 (1991). doi:10.1143/JJAP.30.3344

    Article  ADS  CAS  Google Scholar 

  4. Q.B. Ma, Z.Z. Ye, H.P. He, S.H. Hu, J.R. Wang, L.P. Zhu et al., J. Cryst. Growth 304, 64–68 (2007). doi:10.1016/j.jcrysgro.2007.01.037

    Article  ADS  CAS  Google Scholar 

  5. S.M. Park, T. Ikegami, K. Ebihara, P.K. Shin, Appl. Surf. Sci. 253, 1522–1527 (2006). doi:10.1016/j.apsusc.2006.02.046

    Article  ADS  CAS  Google Scholar 

  6. R.B.H. Tahar, N.B.H. Tahar, J. Mater. Sci. 40, 5285–5289 (2005). doi:10.1007/s10853-005-0522-1

    Article  ADS  CAS  Google Scholar 

  7. P. Nunes, E. Fortunato, P. Tonello, F. Braz-Fernandes, P. Vilarinho, R. Martins, Vacuum 64, 281–285 (2002). doi:10.1016/S0042-207X(01)00322-0

    Article  CAS  Google Scholar 

  8. F.K. Shan, G.X. Liu, W.J. Lee, B.C. Shin, Y.C. Kim, J. Korean Phys. Soc. 50, 626–631 (2007)

    Article  CAS  Google Scholar 

  9. B.T. Lee, T.H. Kim, S.H. Jeong, J. Phys. D: Appl. Phys. (Berl.) 39, 957–961 (2006)

    Article  ADS  CAS  Google Scholar 

  10. V. Assunção, E. Fortunato, A. Marques, H. Águas, I. Ferreira, M.E.V. Costa et al., Thin Solid Films 427, 401–405 (2003). doi:10.1016/S0040-6090(02)01184-7

    Article  ADS  CAS  Google Scholar 

  11. K.Y. Cheong, N. Muti, S. Roy Ramanan, Thin Solid Films 410, 142–146 (2002). doi:10.1016/S0040-6090(02)00286-9

    Article  ADS  CAS  Google Scholar 

  12. K.T. Ramakrishna Reddy, R.W. Miles, J. Mater. Sci. Lett. 17, 279–281 (1998). doi:10.1023/A:1006569203107

    Article  Google Scholar 

  13. Q.B. Ma, Z.Z. Ye, H.P. He, J.R. Wang, L.P. Zhu, B.H. Zhao, Vacuum 82, 9–14 (2008). doi:10.1016/j.vacuum.2006.12.010

    Article  CAS  Google Scholar 

  14. F.K. Shan, G.X. Liu, W.J. Lee, B.C. Shin, S.C. Kim, J. Electroceram. 17, 287–292 (2006). doi:10.1007/s10832-006-9436-9

    Article  CAS  Google Scholar 

  15. J.L. Zhao, X.M. Li, J.M. Bian, W.D. Yu, X.D. Gao, J. Cryst. Growth 276, 507–512 (2005). doi:10.1016/j.jcrysgro.2004.11.407

    Article  ADS  CAS  Google Scholar 

  16. N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, J. Cryst. Growth 130, 269–279 (1993). doi:10.1016/0022-0248(93)90861-P

    Article  ADS  CAS  Google Scholar 

  17. X. Chen, W. Guan, G. Fang, X.Z. Zhao, Appl. Surf. Sci. 252, 1561–1567 (2005). doi:10.1016/j.apsusc.2005.02.137

    Article  ADS  CAS  Google Scholar 

  18. Z.F. Liu, F.K. Shan, J.Y. Sohn, S.C. Kim, G.Y. Kim, Y.X. Li et al., J. Electroceram. 13, 183–187 (2004). doi:10.1007/s10832-004-5096-9

    Article  MATH  CAS  Google Scholar 

  19. F.K. Shan, B.I. Kim, G.X. Liu, Z.F. Liu, J.Y. Sohn, W.J. Lee et al., J. Appl. Phys. 95, 4772–4775 (2004). doi:10.1063/1.1690091

    Article  ADS  CAS  Google Scholar 

  20. E. Burstein, Phys. Rev. 93, 632–633 (1954). doi:10.1103/PhysRev.93.632

    Article  ADS  CAS  Google Scholar 

  21. R.E. Dietz, J.J. Hopfield, D.G. Thomas, J. Appl. Phys. 32, 2282–2286 (1961). doi:10.1063/1.1777060

    Article  ADS  CAS  Google Scholar 

  22. Z.C. Jin, I. Hamberg, C.G. Granqvist, J. Appl. Phys. 17, 279 (1998)

    Google Scholar 

  23. S.M. Park, T. Ikegami, K. Ebihara, Thin Solid Films 513, 90–94 (2006). doi:10.1016/j.tsf.2006.01.051

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Jun Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, H.H., Joung, Y.H. & Kang, S.J. Influence of the substrate temperature on the optical and electrical properties of Ga-doped ZnO thin films fabricated by pulsed laser deposition. J Mater Sci: Mater Electron 20, 704–708 (2009). https://doi.org/10.1007/s10854-008-9788-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-008-9788-9

Keywords

Navigation