Skip to main content
Log in

Nanoscale phenomena of gallium-doped ZnO thin films on sapphire substrates

  • 1. Informatics: Dielectrics, Ferroelectrics, and Piezoelectrics
  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Gallium-doped ZnO (1.2 at. %) thin films with various thicknesses were deposited on sapphire (001) substrates at 500C using a pulsed laser deposition (PLD) technique. The thin films with different thicknesses (20, 40, 100, 200, 400, and 600 nm, respectively) were obtained by changing the deposition time. An x-ray diffractometer (XRD) was used to investigate the structural properties of the thin films. All of the thin films had a preferred (002) orientation. However, the thin films with 20 and 40 nm thicknesses were of low crystallinity. With increasing thickness the (002) peak increased greatly, and the full width at half maximum (FWHM) values were calculated by using omega scans. Scanning electron microscope (SEM) and atomic force microscope (AFM) were used to investigate the nanoscale phenomena and the surface morphologies of the thin films. The surface roughness increased as the thickness increased. The thin film with 20 nm thickness was very smooth, and no nucleation center could be observed. However, the thin film with thickness over 100 nm showed nucleation. The nucleation center varied with increasing thickness. A spectrometer was used to investigate the luminescent properties of the thin films. It was found that all of the thin films showed near band edge emissions and no deep-level emissions were observed. A blueshift was also observed due to the Burstein-Moss effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Y. Liang and A. D. Yoffe, Phys. Rev. Lett. 20, 59 (1968).

    Article  CAS  Google Scholar 

  2. T.L. Yang, D.H. Zhang, J. Ma, H.L. Ma, and Y. Chen, Thin Solid Films, 326, 60 (1998).

    Article  CAS  Google Scholar 

  3. B. Sang, A. Yamada, and M. Konagai, Jpn. J. Appl. Phys., 37(Part 2), L206 (1998).

    Article  CAS  Google Scholar 

  4. P. Verardi, N. Nastase, C. Gherasim, C. Ghica, M. Dinescu, R. Dinu, and C. Flueraru, J. Crystal Growth 197, 523 (1999).

    Article  CAS  Google Scholar 

  5. J.F. Cordaro, Y. Shim, and J.E. May, J. Appl. Phys., 60, 4186 (1986).

    Article  CAS  Google Scholar 

  6. Y.R. Ryu, S. Zhu, J.D. Budai, H.R. Chandrasekhar, P.F. Miceli, and H.W. White, J. Appl. Phys., 88, 201 (2000).

    Article  CAS  Google Scholar 

  7. D.C. Look, Mater. Sci. Eng. B, 80, 383 (2001).

    Article  Google Scholar 

  8. F.K. Shan, B.C. Shin, S.C. Kim, and Y.S. Yu, J. Eur. Ceram. Soc., 24, 1861 (2004).

    Article  CAS  Google Scholar 

  9. J. Song, I. Pak, K. Yoon, W. Cho, and K. Lim, J. Korean Phys. Soc. 29, 219 (1996).

    CAS  Google Scholar 

  10. F. K. Shan and Y. S. Yu, J. Eur. Ceram. Soc. 24, 1869 (2004).

    Article  CAS  Google Scholar 

  11. F.K. Shan, G.X. Liu, B.I. Kim, B.C. Shin, S.C. Kim, and Y.S. Yu, J. Korean Phys. Soc., 42, S1157 (2003).

    CAS  Google Scholar 

  12. S. So and C. Park, J. Korean Phys. Soc. 40, 925 (2002).

    CAS  Google Scholar 

  13. Y.F. Lu, H.Q. Ni, Z.H. Ni, Z.H. Mai, and Z.M. Ren, J. Appl. Phys., 88, 498 (2000).

    Article  CAS  Google Scholar 

  14. F.K. Shan, B.I. Kim, G.X. Liu, Z.F. Liu, J.Y. Sohn, W.J. Lee, B.C. Shin, and Y.S. Yu, J. Appl. Phys., 95, 4772 (2004).

    Article  CAS  Google Scholar 

  15. S. Bethke, H. Pan, and B.W. Wessels, Appl. Phys. Lett., 52, 138 (1988).

    Article  CAS  Google Scholar 

  16. H.T. Ng, B. Chen, J. Li, J. Han, and M. Meyyappan, Appl. Phys. Lett., 82, 2023 (2003).

    Article  CAS  Google Scholar 

  17. B. Guo, Z. R. Qiu, and K. S. Wong, Appl. Phys. Lett. 82, 2290 (2003).

    Article  CAS  Google Scholar 

  18. S.H. Jeong, B.S. Kim, and B.T. Lee, Appl. Phys. Lett., 82, 2625 (2003).

    Article  CAS  Google Scholar 

  19. F.K. Shan, Z.F. Liu, G.X. Liu, W.J. Lee, G.H. Lee, I.S. Kim, B.C. Shin, and Y.S. Yu, J. Electroceram., 13, 195 (2004).

    Article  CAS  Google Scholar 

  20. H.J. Ko, T. Yao, Y.F. Chen, and S.K. Hong, Appl. Phys. Lett., 76, 1905 (2000).

    Article  CAS  Google Scholar 

  21. F.K. Shan, B.C. Shin, S.W. Jang, and Y.S. Yu, J. Eur. Ceram. Soc., 24, 1015 (2004).

    Article  CAS  Google Scholar 

  22. F.K. Shan, G.X. Liu, W.J. Lee, G.H. Lee, I.S. Kim, B.C. Shin, and Y.C. Kim, J. Crystal Growth, 277, 284 (2005).

    Article  CAS  Google Scholar 

  23. F.K. Shan, G.X. Liu, W.J. Lee, G.H. Lee, I.S. Kim, and B.C. Shin, Appl. Phys. Lett., 86, 221910 (2005).

    Article  Google Scholar 

  24. Z. F. Liu, F. K. Shan, Y. X. Li, B. C. Shin, and Y. S. Yu, J. Crystal Growth 259, 130 (2003).

    Article  CAS  Google Scholar 

  25. Z. F. Liu, F. K. Shan, J. Y. Sohn, S. C. Kim, G. Y. Kim, Y. X. Li, and Y. S. Yu, J. Electroceram. 13, 183 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. K. Shan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, F.K., Liu, G.X., Lee, W.J. et al. Nanoscale phenomena of gallium-doped ZnO thin films on sapphire substrates. J Electroceram 17, 287–292 (2006). https://doi.org/10.1007/s10832-006-9436-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-006-9436-9

Keywords

Navigation