Skip to main content
Log in

A model of non-Ohmic conduction in ZnO varistors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple phenomenological approach to non-Ohmic conduction in zinc oxide based varistors is suggested. The decrease of the barrier height on voltage is considered as a reason of varistor effect. This model gives the relationship between the current density j and the average electric field E in the form \( j=\sigma _0 E\,\exp(\alpha E) \), where the nonlinearity factor α is proportional to the rate of change of the barrier height on voltage \( \alpha \propto (-\hbox{d}\varphi/\hbox{d}U) \). The nonlinearity factor α or the normalized nonlinearity coefficient \( \beta _E = \beta /E_1 \cong \alpha \) (E 1 is the electric field at fixed current density) can be used instead of the traditional but empirical nonlinearity coefficient \( \beta =(E/j)(\hbox{d}j/\hbox{d}E) \). Fairly reasonable agreement between suggested model and experimental results is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Matsuoka, T. Masuyama, Y. Iida, Suppl. J. Jap. Soc. Appl. Phys. 39, 94 (1970)

    Google Scholar 

  2. K. Mukae, K. Tsuda, I. Nagasawa, Jap. J. Appl. Phys. 16, 1361 (1977)

    Article  CAS  Google Scholar 

  3. D.R. Clarke, J. Appl. Phys. 49, 2407 (1978)

    Article  CAS  Google Scholar 

  4. J.D. Levine, CRC Crit. Revs. Solid State Sci. 5, 597 (1975)

    CAS  Google Scholar 

  5. R. Einzinger, Ber. Dt. Keram. Ges. 52, 244 (1975)

    CAS  Google Scholar 

  6. W.G. Morris, J. Vac. Sci. Techn. 13, 926 (1976)

    Article  CAS  Google Scholar 

  7. J. Bernasconi, S. Strassler, B. Knecht, H.P. Klein, A. Menth, Solid State Communs. 21, 867 (1977)

    Article  CAS  Google Scholar 

  8. P.R. Emtage, J. Appl. Phys. 48, 4372 (1977)

    Article  CAS  Google Scholar 

  9. A.B. Glot, in Proceedings of the Nat. Conf. on Physics of Dielectrics and New Areas of their Applications. Electrophysical processes in multicomponent dielectrics, Karaganda, June 1978, ed. by M.P.Tonkonogov (Karaganda Politechnical Institute, 1978), p. 88

  10. J.T.C. van Kemenade, R.K. Eijnthoven, J. Appl. Phys. 50, 938 (1979)

    Article  Google Scholar 

  11. R. Einzinger, Appl. Surf. Sci. 3, 390 (1979)

    Article  CAS  Google Scholar 

  12. G.D. Mahan, L.M. Levinson, H.R. Philipp, J. Appl. Phys. 50, 2799 (1979)

    Article  CAS  Google Scholar 

  13. P.L. Hower, T.K. Gupta, J. Appl. Phys. 50, 4847 (1979)

    Article  CAS  Google Scholar 

  14. A.B. Glot, A.S. Tonkoshkur, B.K. Chernyi, A.Ya. Yakunin, Electron Technique. Ser. 5. Radioparts and Radiocomponents 35, 63 (1979)

    Google Scholar 

  15. A.B. Glot, PhD thesis (Dniepropetrovsk University, Dniepropetrovsk, Ukraine, 1979)

  16. A.M.R. Senos, J.L. Baptista, J. Mat. Sci. Lett. 3, 213 (1984)

    Article  CAS  Google Scholar 

  17. A.B. Glot, C.A. Hogarth, Int. J. Electron. 58, 117 (1985)

    CAS  Google Scholar 

  18. A.B. Glot, C.A. Hogarth, R. Bulpett, Int. J. Electron. 65, 797 (1988)

    Google Scholar 

  19. A.B. Glot, Electron Technique. Ser. 5. Radioparts and Radiocomponents 48, 16 (1982)

    Google Scholar 

  20. G.E. Pike, in Proceedings of the Mater. Res. Soc. Ann. Meet. On Grain Boundaries in Semiconductors, ed. by G.E. Pike, C.H. Seager, H.J. Leamy (Elsevier, 1982), p. 369

  21. A.B. Glot, S.V. Firsin, A.Ya. Yakunin, Russ. Phys. J. 24(5), 101 (1981)

    CAS  Google Scholar 

  22. A.Ya. Karachentsev, Yu.N. Potashev, Electron Technique. Ser. 5. Radioparts and Radiocomponents 33, 37 (1973)

    Google Scholar 

  23. M. Rossinelli, G. Blatter and F. Greuter, in Electrical Ceramics. British Ceramic Proc. No. 36, ed. by B.C.H. Steel (Inst. of Ceramics, Shelton, Stoke-on-Trent, Staffs., UK, 1984), p. 1

  24. G.E. Pike, S.R. Kurtz, P.L. Gourley, H.R. Philipp, L.M. Levinson, J. Appl. Phys. 57, 5512 (1985)

    Article  CAS  Google Scholar 

  25. F. Greuter, G. Blatter, M. Rossinelli, F. Stucky, in Advances in Varistor Technology. Ceramic Transactions, vol. 3, ed. by L.M. Levinson (Am. Ceram. Soc., Westerville, 1989), p. 31

  26. P. Manuel, Revue Phys. Appl. 22, 971 (1987)

    CAS  Google Scholar 

  27. M. Kim, H. Oh, C. Kim, Jap. J. Appl. Phys. 30, L1917 (1991)

    Article  CAS  Google Scholar 

  28. A.B. Glot, in Advances in Varistor Technology. Ceramic Transactions, vol. 3, ed. by L.M. Levinson (Am. Ceram. Soc., Westerville, 1989), p. 194

  29. A.S. Tonkoshkur, Electron Technique. Ser. 5. Radioparts and Radiocomponents 83, 15 (1991)

    Google Scholar 

  30. A.I. Ivon, A.B. Glot, I.M. Chernenko, in Fourth Euro-Ceramics. V. 5. Electroceramics, ed. by G. Gusmano, E. Traversa (Gruppo Editoriale Faenza Editrice, Faenza, Italy, 1995), p. 475

  31. M. Bartkowiak, G.D. Mahan, F.A. Modine, M.A. Alim, R. Lauf, A. McMillan, J. Appl. Phys. 80, 6516 (1996)

    Article  CAS  Google Scholar 

  32. A.B. Glot, A.M. Chack, B.K. Chernyi, A.Ya. Yakunin, Inorg. Mater. 10, 2177 (1974)

    CAS  Google Scholar 

  33. A.Ya. Yakunin, B.K. Chernyi, A.M. Chack, A.B. Glot, Inorg. Mater. 12, 955 (1976)

    CAS  Google Scholar 

  34. A.B. Glot, B.K. Chernyi, A.Ya. Yakunin, Inorg. Mater. 13, 1627 (1977)

    CAS  Google Scholar 

  35. A.B. Glot, in Interaction of Elementary Particles (Dniepropetrovsk University, Dniepropetrovsk, 1976), p. 106

  36. B.I. Shklovsky, Sov. Phys. Semicond. 13, 93 (1979)

    Google Scholar 

  37. A.Ya. Vinnikov, A.M. Meshkov, V.N. Savushkin, Solid State Phys. 24, 1352 (1982)

    CAS  Google Scholar 

  38. L.M. Levinson, H.R. Philipp, J. Appl. Phys. 46, 1332 (1975)

    Article  CAS  Google Scholar 

  39. B.K. Avdeenko, A.B. Glot, A.I. Ivon, I.M. Chernenko, A.I. Schelokov, Inorg. Mater. 16, 1310 (1980)

    CAS  Google Scholar 

  40. L.J. Bowen, F.J. Avella, J. Appl. Phys. 54, 2764 (1983)

    Article  CAS  Google Scholar 

  41. M. Trontelj, D. Kolar, V. Krasevec, in Additives and Interfaces in Electronic Ceramics. Advances in Ceramics, vol. 7 (1983), p. 107

  42. F. Greuter, T. Christen, J. Glatz-Reichenbach, in Mat. Res. Soc. Symp. Proc., Vol. 500 (Material Research Society, 1998), p. 235

  43. J.L. Baptista, P.Q. Mantas, J. Electroceram. 4, 215 (2000)

    Article  CAS  Google Scholar 

  44. M. Fix, J. Soln, Appl. Phys. Lett. 26, 519 (1975)

    Article  CAS  Google Scholar 

  45. B.K. Avdeenko, V.O. Makarov, A.M. Chack, I.M. Chernenko, Russ. Phys. J. 24(1), 109 (1981)

    CAS  Google Scholar 

  46. A.B. Glot, Sov. Phys. Semicond. 18, 121 (1984)

    Google Scholar 

  47. C.H. Seager, G.E. Pike, Appl. Phys. Lett. 40, 471 (1982)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science and Technology Council (CONACYT), Mexico under the project SEP-2003-C02–42821.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Glot.

Additional information

On leave from Dniepropetrovsk National University, Dniepropetrovsk, Ukraine; Fax: +52-953-5320214, ext. 106

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glot, A.B. A model of non-Ohmic conduction in ZnO varistors. J Mater Sci: Mater Electron 17, 755–765 (2006). https://doi.org/10.1007/s10854-006-0019-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-006-0019-y

Keywords

Navigation