Skip to main content
Log in

Facile fabrication of pufferfish-like structured ZIF-8 on cellulose fibers with superhydrophobicity and anti-bacterial adhesion properties

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recently, papers with superhydrophobic surfaces and unique antibacterial and self-cleaning capabilities have attracted great attention due to its potential applications in cold chain logistics packaging. Therefore, a facile and versatile route to fabricate superhydrophobic and anti-bacterial adhesion dual-functional paper was reported. The approach was based on pufferfish-like structured ZIF-8 incorporated cellulose fibers. Specifically, cellulose fibers without any chemical pretreatment were used as templates for the in situ aqueous construction of pufferfish-like structured ZIF-8 with zinc nitrate as zinc source and dimethylimidazole as organic ligand. After paper-making and hydrophobicity treatment, the obtained paper possessed excellent superhydrophobic and anti-bacterial adhesion properties. These surfaces retained their water resistance after 30 finger-wipe cycles and 10 sandpaper abrasions. Moreover, the hydrophobic surface prepared also showed excellent anti-adhesion performance toward bacteria. This strategy route proposed here can significantly reduce or eliminate potential risks associated with various contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

The data can be obtained from authors.

References

  1. Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Rajendran K, Pugazhendhi A, Rao CV, Atabani AE, Kumar G, Yang YH (2021) Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies. Sci Total Environ 765:144429–144449. https://doi.org/10.1016/j.scitotenv.2020.144429

    Article  CAS  Google Scholar 

  2. Hai TAP, Tessman M, Neelakantan N, Samoylov AA, Ito Y, Rajput BS, Pourahmady N, Burkart MD (2021) Renewable polyurethanes from sustainable biological precursors. Biomacromol 22(5):1770–1794. https://doi.org/10.1021/acs.biomac.0c01610

    Article  CAS  Google Scholar 

  3. Cai WF, Luo ZY, Zhou JS, Wang QHA (2021) Review on the selection of raw materials and reactors for biomass fast pyrolysis in China. Fuel Process Technol 221:106919–106932. https://doi.org/10.1016/j.fuproc.2021.106919

    Article  CAS  Google Scholar 

  4. Saravanan A, Kumar PS, Jeevanantham S, Karishma S, Vo DVN (2021) Recent advances and sustainable development of biofuels production from lignocellulosic biomass. Bioresour Technol 344:126203–126214. https://doi.org/10.1016/j.biortech.2021.126203

    Article  CAS  Google Scholar 

  5. Yankov D (2022) Fermentative lactic acid production from lignocellulosic feedstocks: from source to purified product. Front Chem 10:823005–823038. https://doi.org/10.3389/fchem.2022.823005

    Article  CAS  Google Scholar 

  6. Zhang ZJ, Fang ZH, Xiang YY, Liu D, Xie ZZ, Qu DY, Sun ML, Tang HL, Li JS (2021) Cellulose-based material in lithium–sulfur batteries: a review. Carbohyd Polym 255:117469–117480. https://doi.org/10.1016/j.carbpol.2020.117469

    Article  CAS  Google Scholar 

  7. Wang JW, Wang L, Gardner DJ, Shaler SM, Cai ZY (2021) Towards a cellulose-based society: opportunities and challenges. Cellulose 28(8):4511–4543. https://doi.org/10.1007/s10570-021-03771-4

    Article  Google Scholar 

  8. Verma C, Chhajed M, Singh S, Maji PK (2022) Cellulose nanocrystals for environment-friendly self-assembled stimuli doped multisensing photonics. ACS Appl Polym Mater 4(6):4047–4068. https://doi.org/10.1021/acsapm.2c00061

    Article  CAS  Google Scholar 

  9. Ahmad H (2021) Celluloses as support materials for antibacterial agents: a review. Cellulose 28(5):2715–2761. https://doi.org/10.1007/s10570-021-03703-2

    Article  CAS  Google Scholar 

  10. Huang JW, Li DD, Huang LH, Tan SZ, Liu T (2022) Bio-based aerogel based on bamboo, waste paper, and reduced graphene oxide for oil/water separation. Langmuir 38(10):3064–3075. https://doi.org/10.1021/acs.langmuir.1c02821

    Article  CAS  Google Scholar 

  11. Basak S, Saxena S, Raja ASM, Patil PG, Krishnaprasad G, Narkar R, Kambli N (2021) Development of cotton fibre based fragrance pack and its characterization. Cellulose 28(11):7185–7200. https://doi.org/10.1007/s10570-021-03974-9

    Article  CAS  Google Scholar 

  12. Jin KF, Ji X, Yang TT, Zhang JM, Tian WG, Yu J, Zhang X, Chen ZY, Zhang J (2021) Facile access to photo-switchable, dynamic-optical, multi-colored and solid-state materials from carbon dots and cellulose for photo-rewritable paper and advanced anti-counterfeiting. Chem Eng J 406:126794–126802. https://doi.org/10.1016/j.cej.2020.126794

    Article  CAS  Google Scholar 

  13. Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007) Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrates. Biomacromol 8(4):1347–1352. https://doi.org/10.1021/bm0700136

    Article  CAS  Google Scholar 

  14. Chauhan VS, Bhardwaj NK (2013) Effect of particle size and preflocculation of talc filler on sizing characteristics of paper. Appita J 66(1):66–72. https://doi.org/10.3316/informit.083962724504325

    Article  Google Scholar 

  15. Samyn P, Deconinck M, Schoukens G, Stanssens D, Vonck L, Abbeele HV (2010) Modifications of paper and paperboard surfaces with a nanostructured polymer coating. Prog Org Coat 69(4):442–454. https://doi.org/10.1016/j.porgcoat.2010.08.008

    Article  CAS  Google Scholar 

  16. Ogihara H, Xie J, Saji T (2013) Factors determining wettability of superhydrophobic paper prepared by spraying nanoparticle suspensions. Colloid Surface A 434:35–41. https://doi.org/10.1016/j.colsurfa.2013.05.034

    Article  CAS  Google Scholar 

  17. Pasquinia D, Teixeira EDM, Curvelo AADS, Belgacem MN, Dufresne A (2008) Surface esterification of cellulose fibres: processing and characterisation of low-density polyethylene/cellulose fibres composites. Compos Sci Technol 68(1):193–201. https://doi.org/10.1016/j.compscitech.2007.05.009

    Article  CAS  Google Scholar 

  18. Ahmadi M, Behzad T, Bagheri R, Ghiaci M, Sain M (2017) Topochemistry of cellulose nanofibers resulting from molecular and polymer grafting. Cellulose 24(5):2139–2152. https://doi.org/10.1007/s10570-017-1254-5

    Article  CAS  Google Scholar 

  19. Zhang WW, Xiao HN, Qian LY (2014) Enhanced water vapour barrier and grease resistance of paper bilayer-coated with chitosan and beeswax. Carbohyd Polym 101:401–406. https://doi.org/10.1016/j.carbpol.2013.09.097

    Article  CAS  Google Scholar 

  20. Liu H, Zhang L, Huang JY, Zhang XL, Mao JJ, Chen Z, Mao QH, Ge MZ, Lai YK (2022) Superwetting patterned PDMS/PMMA materials by facile one-step electro-spraying for signal expression and liquid transportation. Chem Eng J 431:133206–133214. https://doi.org/10.1016/j.cej.2021.133206

    Article  CAS  Google Scholar 

  21. Kang X, Li Y, Ma XY, Sun HM (2022) Fabrication and characterization of high performance superhydrophobic organosilane-coated fly ash composites with novel micro-nano-hierarchy roughness. J Mater Sci 57(29):13914–13927. https://doi.org/10.1007/s10853-022-07473-5

    Article  CAS  Google Scholar 

  22. Chang GC, Liu Z, Guo XJ, Xiao CF (2022) Construction of superhydrophobic micro/nano-structure surface on polypropylene hollow fiber membrane and its application in membrane distillation. J Mater Sci 57(9):5658–5678. https://doi.org/10.1007/s10853-022-06942-1

    Article  CAS  Google Scholar 

  23. Long MY, Ma Y, Yang C, Zhang RN, Jiang ZY (2021) Superwetting membranes: from controllable constructions to efficient separations. J Mater Chem A 9(3):1395–1417. https://doi.org/10.1039/D0TA10280F

    Article  CAS  Google Scholar 

  24. Cao YJ, Salvini A, Camaiti M (2021) One-step fabrication of robust and durable superamphiphobic, self-cleaning surface for outdoor and in situ application on building substrates. J Colloid Interf Sci 591:239–252. https://doi.org/10.1016/j.jcis.2021.02.001

    Article  CAS  Google Scholar 

  25. Moon CH, Yasmeen S, Park K, Gaiji H, Chung C, Kim H, Moon HS, Choi JW, Lee HBR (2022) Icephobic coating through a self-formed superhydrophobic surface using a polymer and microsized particles. ACS Appl Mater Interfaces 14(2):3334–3343. https://doi.org/10.1021/acsami.1c22404

    Article  CAS  Google Scholar 

  26. Kim JH, Mirzaei A, Kim HW, Kim SS (2018) Facile fabrication of superhydrophobic surfaces from austenitic stainless steel (AISI 304) by chemical etching. Appl Surf Sci 439:598–604. https://doi.org/10.1016/j.apsusc.2017.12.211

    Article  CAS  Google Scholar 

  27. Ma YW, He Q (2022) Preparation of superhydrophobic conductive CNT/PDMS film on paper by foam spraying method. Colloids Surf A Physicochem Eng Asp 648:129327–129336. https://doi.org/10.1016/j.colsurfa.2022.129327

    Article  CAS  Google Scholar 

  28. Martins VDF, Cerqueira MA, Fucinos P, Garrido-Maestu A, Curto JMR, Pastrana LM (2018) Active bi-layer cellulose-based films: development and characterization. Cellulose 25(11):6361–6375. https://doi.org/10.1007/s10570-018-2021-y

    Article  CAS  Google Scholar 

  29. Chen JQ, Zhu ZD, Zhang H, Fu SY (2022) Superhydrophobic light-driven actuator based on self-densified wood film with a sandwich-like structure. Compos Sci Technol 220:109278–109287. https://doi.org/10.1016/j.compscitech.2022.109278

    Article  CAS  Google Scholar 

  30. Nguyen-Trig P, Altiparmak F, Nguyen N, Tuduri L, Ouellet-Plamondon CM, Prud’homme RE (2019) Robust superhydrophobic cotton fibers prepared by simple dip-coating approach using chemical and plasma-etching pretreatments. ACS Omega 4(4):7829–7837. https://doi.org/10.1021/acsomega.9b00688

    Article  CAS  Google Scholar 

  31. Lu JW, Yan S, Song W, Jacob KI, Xiao R (2020) Construction and characterization of versatile flexible composite nanofibrous aerogels based on thermoplastic polymeric nanofibers. J Mater Sci 55(19):8155–8169. https://doi.org/10.1007/s10853-020-04400-4

    Article  CAS  Google Scholar 

  32. Hou CM, Cao CJ (2021) Superhydrophobic cotton fabric membrane prepared by fluoropolymers and modified nano-SiO2 used for oil/water separation. RSC Adv 11(50):31675–31687. https://doi.org/10.1039/D1RA06393F

    Article  CAS  Google Scholar 

  33. Wang Q, Xie D, Chen J, Liu G, Yu M (2020) Superhydrophobic paper fabricated via nanostructured titanium dioxide-functionalized wood cellulose fibers. J Mater Sci 55:2549–2559. https://doi.org/10.1007/s10853-020-04489-7

    Article  CAS  Google Scholar 

  34. Yu M, Wang Q, Zhang M, Deng Q, Chen D (2017) Facile fabrication of raspberry-like composite microspheres for the construction of superhydrophobic films and applications in highly efficient oil–water separation. RSC Adv 7:39471–39479. https://doi.org/10.1039/C7RA07250C

    Article  CAS  Google Scholar 

  35. Wang Q, Yu M, Chen G, Chen Q, Tian J (2017) Robust fabrication of fluorine-free superhydrophobic steel mesh for efficient oil/water separation. J Mater Sci 52:7084–7094. https://doi.org/10.1007/s10853-016-0548-6

    Article  CAS  Google Scholar 

  36. Chen H, Wang F, Fan H, Hong R, Li W (2021) Construction of MOF-based superhydrophobic composite coating with excellent abrasion resistance and durability for self-cleaning, corrosion resistance, anti-icing, and loading-increasing research. Chem Eng J 408:127343–127355. https://doi.org/10.1016/j.cej.2020.127343

    Article  CAS  Google Scholar 

  37. Wang X, Xu S, Tan Y, Du J, Wang J (2016) Synthesis and characterization of a porous and hydrophobic cellulose-based composite for efficient and fast oil-water separation. Carbohyd Polym 140:188–194. https://doi.org/10.1016/j.carbpol.2015.12.028

    Article  CAS  Google Scholar 

  38. Fu H, Ou P, Zhu J, Song P, Yang J, Wu Y (2019) Enhanced protein adsorption in fibrous substrates treated with zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. ACS Appl Nano Mater 2(12):7626–7636. https://doi.org/10.1021/acsanm.9b01717

    Article  CAS  Google Scholar 

  39. Wang Q, Xie D, Chen J, Liu G, Yu M (2020) Facile fabrication of superhydrophobic and photoluminescent TEMPO-oxidized cellulose-based paper for anticounterfeiting application. ACS Sustain Chem Eng 8(35):13176–13184. https://doi.org/10.1021/acssuschemeng.0c01559

    Article  CAS  Google Scholar 

  40. Li Y, Li J, Soria RB, Volodine A, Van der Bruggen B (2020) Aramid nanofiber and modified ZIF-8 constructed porous nanocomposite membrane for organic solvent nanofiltration. J Membr Sci 603:118002–118011. https://doi.org/10.1016/j.memsci.2020.118002

    Article  CAS  Google Scholar 

  41. Thanh MT, Thien TV, Du PD, Hung NP, Khieu DQ (2018) Iron doped zeolitic imidazolate framework (Fe-ZIF-8): synthesis and photocatalytic degradation of RDB dye in Fe-ZIF-8. J Porous Mat 25(3):857–869. https://doi.org/10.1007/s10934-017-0498-7

    Article  CAS  Google Scholar 

  42. Hu X, Yan X, Zhou M, Komarneni S (2016) One-step synthesis of nanostructured mesoporous ZIF-8/silica composites. Microporous Mesoporous Mater 219:311–316. https://doi.org/10.1016/j.micromeso.2015.06.046

    Article  CAS  Google Scholar 

  43. Wang Q, Xie D, Chen J, Luo J, Chen G, Yu M (2022) Straightforward fabrication of robust and healable superhydrophobic steel mesh based on polydimethylsiloxane. J Appl Polym Sci 139(21):52206–52216. https://doi.org/10.1002/app.52206

    Article  CAS  Google Scholar 

  44. Aldhaleai A, Tsai PA (2021) Fabrication of transparent and microstructured superhydrophobic substrates using additive manufacturing. Langmuir 37(1):348–356. https://doi.org/10.1021/acs.langmuir.0c02945

    Article  CAS  Google Scholar 

  45. Guo R, Goudeli E, Xu W, Richardson JJ, Xu W, Pan S (2022) Exploiting molecular dynamics in composite coatings to design robust super-repellent surfaces. Adv Sci 9(6):2104331–2104343. https://doi.org/10.1002/advs.202104331

    Article  CAS  Google Scholar 

  46. Xie H, Xu WH, Du Y, Gong J, Niu R, Wu T, Qu JP (2022) Cost-effective fabrication of micro-nanostructured superhydrophobic polyethylene/graphene foam with self-floating, optical trapping, acid-/alkali resistance for efficient photothermal deicing and interfacial evaporation. Small 18(17):2200175–2200186. https://doi.org/10.1002/smll.202200175

    Article  CAS  Google Scholar 

  47. Yang Y, Guo Z, Huang W, Zhang S, Huang J, Yang H, Zhou Y, Xu W, Gu S (2020) Fabrication of multifunctional textiles with durable antibacterial property and efficient oil-water separation via in situ growth of zeolitic imidazolate framework-8 (ZIF-8) on cotton fabric. Appl Surf Sci 503:144079–144088. https://doi.org/10.1016/j.apsusc.2019.144079

    Article  CAS  Google Scholar 

  48. Liu S, Zheng J, Hao L, Yegin Y, Bae M, Ulugun B, Taylor TM, Scholar EA, Cisneros-Zevallos L, Oh JK, Akbulut M (2020) Dual-functional, superhydrophobic coatings with bacterial anticontact and antimicrobial characteristics. ACS Appl Mater Interfaces 12(19):21311–21321. https://doi.org/10.1021/acsami.9b18928

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by The National Natural Science Foundation of China (No. 22208063), Guangzhou Science and Technology Plan Project (202201011426), Key Project of Biomedicine and Health in Colleges and Universities of Guangdong Province (2021ZDZX2055), Medical Science and Technology Research Fund of Guangdong Province (A2022004), which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

QW, MQ, SY, and XY contributed to investigation, methodology, original draft; QW, MY, LL, and ZW contributed to formal analysis, validation, supervision, visualization and writing-review & editing; and QD and QW contributed to data curation and funding acquisition.

Corresponding authors

Correspondence to Qing Wang or Mingguang Yu.

Ethics declarations

Conflict of interest

The authors declare that there are no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

There are no ethical issues involved in this work.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 884 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Qiu, M., Yu, S. et al. Facile fabrication of pufferfish-like structured ZIF-8 on cellulose fibers with superhydrophobicity and anti-bacterial adhesion properties. J Mater Sci 59, 289–303 (2024). https://doi.org/10.1007/s10853-023-09200-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09200-0

Navigation