Skip to main content
Log in

Room-temperature paramagnetoelectric effect in magnetoelectric multiferroics Pb(Fe1/2Nb1/2)O3 and its solid solution with PbTiO3

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have observed the magnetoelectric (ME) response at room temperature and above in high-resistive ceramics made of multiferroic Pb(Fe1/2Nb1/2)O3 (PFN) and PFN-based solid solution 0.91PFN-0.09PbTiO3 (PFN-PT). The value of the paramagnetoelectric (PME) coefficient shows a pronounced maximum near the ferroelectric-to-paraelectric phase transition temperature, T C, and then decreases sharply to zero for T > T C. The maximal PME coefficient in PFN is about 4 × 10−18 s/A. The theoretical description of the PME effect, within the framework of a Landau theory of phase transitions allowing for realistic temperature dependences of spontaneous polarization, dielectric and magnetic susceptibilities, qualitatively reproduces well the temperature dependence of the PME coefficient. In particular, the Landau theory predicts the significant increase of the PME effect at low temperatures and near the temperature of the paraelectric-to-ferroelectric phase transition, since the PME coefficient is equal to the product of the spontaneous polarization, dielectric permittivity, square of magnetic susceptibility, and the coefficient quantifying the strength of the biquadratic ME coupling. An atomistic technique is further developed and used to further demonstrate that the PME effect can also be sensitive to the frequency of the applied magnetic field (when this frequency is of the order of GHz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Ramesh R, Spaldin NA (2007) Multiferroics: progress and prospects in thin films. Nat Mater 6:21–29

    Article  Google Scholar 

  2. Ryan PJ, Kim J-W, Birol T, Thompson P, Lee J-H, Ke X, Normile PS, Karapetrova E, Schiffer P, Brown SD, Fennie CJ, Schlom DG (2013) Reversible control of magnetic interactions by electric field in a single-phase material. Nat Commun 4:1334

    Article  Google Scholar 

  3. Haun MJ, Furman E, Halemane TR, Cross LE (1989) Thermodynamic theory of the lead zirconate-titanate solid solution system, part IV: tilting of the oxygen octahedra. Ferroelectrics 99:55–62

    Article  Google Scholar 

  4. Balashova EV, Tagantsev AK (1993) Polarization response of crystals with structural and ferroelectric instabilities. Phys Rev B 48:9979–9986

    Article  Google Scholar 

  5. Tagantsev AK, Courtens E, Arzel L (2001) Prediction of a low-temperature ferroelectric instability in antiphase domain boundaries of strontium titanate. Phys Rev B 64:224107

    Article  Google Scholar 

  6. Hou SL, Bloembergen N (1965) Paramagnetoelectric effects in NiSO4·6 H2O. Phys Rev 138:A1218–A1226

    Article  Google Scholar 

  7. Shvartsman VV, Bedanta S, Borisov P, Kleemann W (2008) (Sr, Mn)TiO3: a magnetoelectric multiglass. Phys Rev Lett 101:165704

    Article  Google Scholar 

  8. Howes B, Pelizzone M, Fischer P, Tabaresmunoz C, Rivera J-P, Schmid H (1984) Characterisation of some magnetic and magnetoelectric properties of ferroelectric Pb(Fe1/2Nb1/2)O3. Ferroelectrics 54:317–320

    Article  Google Scholar 

  9. Watanabe T, Kohn K (1989) Magnetoelectric effect and low temperature transition of PbFe0.5Nb0.5O3 single crystal. Phase Transit 15:57–68

    Article  Google Scholar 

  10. Kleemann W, Shvartsman VV, Borisov P, Kania A (2010) Coexistence of antiferromagnetic and spin cluster glass order in the magnetoelectric relaxor multiferroic PbFe0.5Nb0.5O3. Phys Rev Lett 105:257202

    Article  Google Scholar 

  11. Wang W, Yan L-Q, Cong J-Z, Zhao Y-L, Wang F, Shen S-P, Zou T, Zhang D, Wang S-G, Han X-F, Sun Y (2013) Magnetoelectric coupling in the paramagnetic state of a metal-organic framework. Sci Rep 3:2024. doi:10.1038/srep02024

    Google Scholar 

  12. Fiebig M (2005) Revival of the magnetoelectric effect. J Phys D 38:R123–R152

    Article  Google Scholar 

  13. Glinchuk MD, Eliseev EA, Morozovska AN, Blinc R (2008) Giant magnetoelectric effect induced by intrinsic surface stress in ferroic nanorods. Phys Rev B 77:024106

    Article  Google Scholar 

  14. Rahmedov D, Prosandeev S, Íñiguez J, Bellaiche L (2013) Magnetoelectric signature in the magnetic properties of antiferromagnetic multiferroics: atomistic simulations and phenomenology. Phys Rev B 88:224405

    Article  Google Scholar 

  15. Glinchuk MD, Eliseev EA, Gu Y, Chen L-G, Gopalan V, Morozovska AN (2014) Electric-field induced ferromagnetic phase in paraelectric antiferromagnets. Phys Rev B 89:1014112

    Article  Google Scholar 

  16. Glinchuk MD, Eliseev EA, Morozovska AN (2014) New room temperature multiferroics on the base of single-phase nanostructured perovskites. J Appl Phys 116:054101

    Article  Google Scholar 

  17. Pyatakov AP, Zvezdin AK (2012) Magnetoelectric and multiferroic media. Phys Usp 55:557–581 and refs therein

    Article  Google Scholar 

  18. Bokov AA, Shpak LA, Rayevsky IP (1993) Diffuse phase transition in Pb(Fe0.5Nb0.5)O3-based solid solutions. J Phys Chem Solids 54:495

    Article  Google Scholar 

  19. Kumar MM, Srinivas A, Surynarayana SV, Kumar GS, Bhimasankaram T (1998) An experimental setup for dynamic measurement of magnetoelectric effect. Bull Mater Sci 21:251–255

    Article  Google Scholar 

  20. Murao T (1967) A note on the paramagnetoelectric effect. Prog Theor Phys 37:1038–1040

    Article  Google Scholar 

  21. Raevski IP, Kubrin SP, Raevskaya SI, Prosandeev SA, Malitskaya MA, Titov VV, Sarychev DA, Blazhevich AV, Zakharchenko IN (2012) Dielectric and mossbauer studies of ferroelectric and magnetic phase transitions in A-site and B-site substituted multiferroic PbFe0.5Nb0.5O3. IEEE Trans Ultrason Ferroelect Freq Contr 59:1872–1878

    Article  Google Scholar 

  22. Sitalo EI, Raevski IP, Lutokhin AG, Blazhevich AV, Kubrin SP, Raevskaya SI, Zakharov YN, Malitskaya MA, Titov VV, Zakharchenko IN (2011) Dielectric and piezoelectric properties of PbFe1/2Nb1/2O3–PbTiO3 ceramics from the morphotropic phase boundary compositional range. IEEE Trans Ultrason Ferroelect Freq Contr 58:1914–1919

    Article  Google Scholar 

  23. Blinc R, Cevc P, Zorko A, Holc J, Kosec M, Trontelj Z, Pirnat J, Dalal N, Ramachandran V, Krzystek J (2007) Electron paramagnetic resonance of magnetoelectric Pb(Fe1/2Nb1/2)O3. J Appl Phys 101:033901

    Article  Google Scholar 

  24. Peng W, Lemée N, Karkut M, Dkhil B, Shvartsman VV, Borisov P, Kleemann W, Holc J, Kosec M, Blinc R (2009) Spin-lattice coupling in multiferroic Pb(Fe1/2Nb1/2)O3 thin films. Appl Phys Lett 94:012509

    Article  Google Scholar 

  25. Singh SP, Yusuf SM, Yoon S, Baik S, Shin N, Pandey D (2010) Ferroic transitions in the multiferroic (1 − x)Pb (Fe1/2Nb1/2)O3–xPbTiO3 system and its phase diagram. Acta Mat 58:5381–5392

    Article  Google Scholar 

  26. Laguta VV, Glinchuk MD, Maryško M, Kuzian RO, Prosandeev SA, Raevskaya SI, Smotrakov VG, Eremkin VV, Raevski IP (2013) Effect of Ba and Ti doping on magnetic properties of multiferroic Pb(Fe1/2Nb1/2)O3. Phys Rev B 87:064403

    Article  Google Scholar 

  27. Pertsev NA, Zembilgotov AG, Tagantsev AK (1998) Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys Rev Lett 80:1988

    Article  Google Scholar 

  28. Morozovska AN, Eliseev EA, Glinchuk MD (2006) Ferroelectricity enhancement in confined nanorods: direct variational method. Phys. Rev. B. 73:214106

    Article  Google Scholar 

  29. Morozovska AN, Eliseev EA, Glinchuk MD (2007) Size effects and depolarization field influence on the phase diagrams of cylindrical ferroelectric nanoparticles. Phys B 387:358–366

    Article  Google Scholar 

  30. Bokov VA, Mylnikova IE, Smolenskii GA (1962) Ferroelectric antiferromagnetics. Sov Phys JETP 15:447–449

    Google Scholar 

  31. Prosandeev S, Kornev IA, Bellaiche L (2011) Magnetoelectricity in BiFeO3 films: first-principles based computations and phenomenology. Phys Rev B 83:020102(R)

    Article  Google Scholar 

  32. Kvasov A, Tagantsev AK (2013) Role of high-order electromechanical coupling terms in thermodynamics of ferroelectric thin films. Phys Rev B 87:184101

    Article  Google Scholar 

  33. Katsufuji T, Takagi H (2001) Coupling between magnetism and dielectric properties in quantum paraelectric EuTiO3. Phys Rev B 64:054415

    Article  Google Scholar 

  34. Yang Y, Liu Y-M, Huang HB, Zou WQ, Bao P, Liu ZG (2004) Magnetoelectric coupling in ferroelectromagnet Pb(Fe1/2Nb1/2)O3 single crystals. Phys Rev B 70:132101

    Article  Google Scholar 

  35. Bochenek D, Guzdek P (2011) Ferroelectric and magnetic properties of ferroelectromagnetic PbFe1/2Nb1/2O3 type ceramics. J Magn Magn Mater 323:369–374

    Article  Google Scholar 

  36. Albrecht D, Lisenkov S, Ren W, Rahmedov D, Kornev IA, Bellaiche L (2010) Ferromagnetism in multiferroic BiFeO3 films: a first-principles-based study. Phys Rev B 81:140401(R)

    Article  Google Scholar 

  37. Kornev IA, Lisenkov S, Haumont R, Dkhil B, Bellaiche L (2007) Finite-temperature properties of multiferroic BiFeO3. Phys Rev Lett 99:227602

    Article  Google Scholar 

  38. Prosandeev S, Wang D, Ren W, Iniguez J, Bellaiche L (2013) Novel nanoscale twinned phases in perovskite oxides. Adv Funct Mat 23:234–240

    Article  Google Scholar 

  39. Wang D, Weerasinghe J, Bellaiche L (2012) Atomistic molecular dynamic simulations of multiferroics. Phys Rev Lett 109:067203

    Article  Google Scholar 

  40. Tabares-Munoz C, Rivera J-P, Bezinges A, Monnier A, Schmid H (1985) Measurement of the quadratic magnetoelectric effect on single crystalline BiFeO3. Jpn J Appl Phys 24(part 1):1051–1053

    Article  Google Scholar 

  41. Livesey KL, Stamps RL (2010) High-frequency susceptibility of a weak ferromagnet with magnetostrictive magnetoelectric coupling: using heterostructures to tailor electromagnon frequencies. Phys Rev B 81:094405

    Article  Google Scholar 

  42. Prosandeev S, Malashevich A, Raevski IP, Bellaiche L (2015) Dynamical magnetoelectric effects associated with ferroelectric domain walls. Phys Rev B 91:100101(R)

    Article  Google Scholar 

  43. Laguta VV, Stephanovich VA, Savinov M, Marysko M, Kuzian RO, Olekhnovich NM, Pushkarev AV, Radyush YuV, Raevski IP, Raevskaya SI, Prosandeev SA (2014) Superspin glass phase and hierarchy of interactions in multiferroic PbFe1/2Sb1/2O3: an analog of ferroelectric relaxors? New J Phys 16:11304

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the GA CR under Project No. 13-11473S, the Russian Foundation for Basic Research (Project 14-02-90438_Ukr_a), National Academy of Sciences of Ukraine (Grant No. 07-02-14), and the Ministry of education and science of Russian Federation (Research Project 2132). S.P. and L.B. acknowledge the Air Force Office of Scientific Research under Grant FA9550-16-1-0065 and the Department of Energy, Office of Basic Energy Sciences, under contract ER-46612.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Laguta or A. N. Morozovska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laguta, V.V., Morozovska, A.N., Eliseev, E.A. et al. Room-temperature paramagnetoelectric effect in magnetoelectric multiferroics Pb(Fe1/2Nb1/2)O3 and its solid solution with PbTiO3 . J Mater Sci 51, 5330–5342 (2016). https://doi.org/10.1007/s10853-016-9836-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9836-4

Keywords

Navigation