Skip to main content
Log in

Room-temperature ferroelectricity, superparamagnetism and large magnetoelectricity of solid solution PbFe1/2Ta1/2O3 with (PbMg1/3Nb2/3O3)0.7(PbTiO3)0.3

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report the properties of first synthesized ceramic samples of a perovskite solid solution (PbFe1/2Ta1/2O3)x[(PbMg1/3Nb2/3O3)0.7(PbTiO3)0.3]1−x, x = 0.4, 0.5. The solution is a single-phase material contrary to broadly studied multiphase (magnetic/ferroelectric) composites. Both compounds are ferroelectrics with a diffuse phase transition. An increase in x value results in a decrease in phase transition diffuseness, and an increase in the remnant polarization. 207Pb NMR shows that iron ions are nonuniformly distributed over octahedral sites and tend to random occupation of these sites in the perovskite structure. In particular, the NMR data indicate a tendency to form regions with a higher concentration of iron in the perovskite structure. Magnetic measurements show the coexistence of superparamagnetic and paramagnetic phases in the samples. The paramagnetoelectric (PME) coefficients determined by a dynamic method at room temperature have values β ≈ 0.15 × 10−15 s A−1 (x = 0.4) and 0.54 × 10−15 s A−1 (x = 0.5) at low magnetic fields (± 300 Oe), which are three thousands times larger than that in most single-phase magnetoelectric materials. Our measurements show that the main contribution to the PME response is caused by the superparamagnetic phase. Because the ME response is proportional to dM2/dH, it can be amplified by many orders of magnitude for the multiferroics with the superparamagnetic phase due to a sharp change of magnetization with the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Fig. 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Spaldin NA, Ramesh R (2008) Electric-field control of magnetism in complex oxide thin films. MRS Bull 33:1047–1050

    CAS  Google Scholar 

  2. Scott JF (2012) Applications of magnetoelectrics. J Mater Chem 22:4567–4574

    CAS  Google Scholar 

  3. Pyatakov AP, Zvezdin AK (2012) Magnetoelectric and multiferroic media. Physics Uspekhi 55:557–581

    CAS  Google Scholar 

  4. Cherifi RO, Ivanovskaya V, Phillips LC, Zobelli A, Infante IC, Jacquet E, Garcia V, Fusil S, Briddon PR, Guiblin N, Mougin A, Ünal AA, Kronast F, Valencia S, Dkhil B, Barthélémy A, Bibes M (2014) Electric-field control of magnetic order above room temperature. Nat Mater 13:345–351

    CAS  Google Scholar 

  5. Scott JF (2013) Room-temperature multiferroic magnetoelectrics. NPG Asia Mater 5(11):e72

    CAS  Google Scholar 

  6. Feibig M (2005) Revival of the magnetoelectric effect. J Phys D Appl Phys 38:R123–R152

    Google Scholar 

  7. Ryu J, Priya S, Uchino K, Kim H-E (2002) Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J Electroceram 8:107–119

    CAS  Google Scholar 

  8. Smolenskii G, Loffe VA (1958) Communication No 71. Colloque International du Magnetisme, Grenoble

    Google Scholar 

  9. Bokov V, Myl’nikova I, Smolenskii GA (1962) Ferroelectric antiferromagnetics. Sov Phys JETP 15:447–449

    Google Scholar 

  10. Sanchez DA, Ortega N, Kumar A, Roque-Malherbe R, Polanco R, Scott JF, Katiyar RS (2011) Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: lead iron tantalate–lead zirconate titanate (PFT/PZT). AIP Adv 1:042169

    Google Scholar 

  11. Martin LW, Ramesh R (2012) Multiferroic and magnetoelectric heterostructures. Acta Mater 60:2449–2470

    CAS  Google Scholar 

  12. Evans DM, Schilling A, Kumar A, Sanchez D, Ortega N, Arredondo M, Katiyar RS, Gregg JM, Scott JF (2013) Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT. Nat Commun 4:1534

    CAS  Google Scholar 

  13. Sanchez DA, Ortega N, Kumar A, Sreenivasulu G, Katiyar RS, Scott JF, Evans DM, Arredondo-Arechavala M, Schilling A, Gregg JM (2013) Room-temperature single phase multiferroic magnetoelectrics: Pb(Fe, M)x(Zr, Ti)(1–x)O3 [M = Ta, Nb]. J Appl Phys 113:074105

    Google Scholar 

  14. Evans DM, Schilling A, Kumar A, Sanchez D, Ortega N, Katiyar RS, Scott JF, Gregg JM (2014) Switching ferroelectric domain configurations using both electric and magnetic fields in Pb(Zr, Ti)O3–Pb(Fe, Ta)O3 single-crystal lamellae. Philos Trans R Soc A 372:20120450

    CAS  Google Scholar 

  15. Schiemer J, Carpenter MA, Evans DM, Gregg JM, Schilling A, Arredondo M, Alexe M, Sanchez D, Ortega N, Katiyar RS, Echizen M, Colliver E, Dutton S, Scott JF (2014) Studies of the room-temperature multiferroic Pb(Fe0.5Ta0.5)0.4(Zr0.53Ti0.47)0.6O3: resonant ultrasound spectroscopy, dielectric, and magnetic phenomena. Adv Funct Mater 24:2993–3002

    CAS  Google Scholar 

  16. Schiemer JA, Lascu I, Harrison RJ et al (2016) Elastic and anelastic relaxation behaviour of perovskite multiferroics I: PbZr0.53Ti0.47O3 (PZT)–PbFe0.5Nb0.5O3 (PFN). J Mater Sci 51:10727–10760. https://doi.org/10.1007/s10853-016-0280-2

    Article  CAS  Google Scholar 

  17. Schiemer JA, Lascu I, Harrison RJ et al (2017) Elastic and anelastic relaxation behaviour of perovskite multiferroics II: PbZr0.53Ti0.47O3 (PZT)–PbFe0.5Ta0.5O3 (PFT). J Mater Sci 52:285–304. https://doi.org/10.1007/s10853-016-0330-9

    Article  CAS  Google Scholar 

  18. Glinchuk MD, Eliseev EA, Morozovska AN (2014) Novel room temperature multiferroics on the base of single-phase nanostructured perovskites. J Appl Phys 116:054101

    Google Scholar 

  19. Glinchuk MD, Eliseev EA, Morozovska AN (2016) Landau–Ginzburg description of anomalous properties of novel room temperature multiferroics Pb(Fe1/2Ta1/2)x(Zr0.53Ti0.47)1−xO3 and Pb(Fe1/2Nb1/2)x(Zr0.53Ti0.47)1−xO3. J Appl Phys 119:024102

    Google Scholar 

  20. Kuzian RO, Laguta VV, Richter J (2014) Lieb–Mattis ferrimagnetic superstructure and superparamagnetism in Fe-based double perovskite multiferroics. Phys Rev B 90:134415

    Google Scholar 

  21. Kuzian RO, Richter J, Kuz’min MD, Hayn R (2016) Lieb–Mattis ferrimagnetism in magnetic semiconductors. Phys Rev B 93:214433

    Google Scholar 

  22. Laguta VV, Stephanovich VA, Savinov M et al (2014) Superspin glass phase and hierarchy of interactions in multiferroic PbFe1/2Sb1/2O3: an analog of ferroelectric relaxors? New J Phys 16:113041

    Google Scholar 

  23. Coey JMD, Douvalis AP, Fitzgerald CB, Venkatesan M (2004) Ferromagnetism in Fe-doped SnO2 thin films. Appl Phys Lett 84:1332–1334

    CAS  Google Scholar 

  24. Hou SL, Bloembergen N (1965) Paramagnetoelectric effects in NiSO4·6H2O. Phys Rev 138:A1218–A1226

    Google Scholar 

  25. Laguta VV, Morozovska AN, Eliseev EA, Raevski IP, Raevskaya SI, Sitalo EI, Prosandeev SA, Bellaiche L (2016) Room-temperature paramagnetoelectric effectin magnetoelectric multiferroics Pb(Fe1/2Nb1/2)O3 and its solid solution with PbTiO3. J Mater Sci 51:5330–5342. https://doi.org/10.1007/s10853-016-9836-4

    Article  CAS  Google Scholar 

  26. Laguta VV, Stephanovich VA, Raevski IP, Raevskaya SI, Titov VV, Smotrakov VG, Eremkin VV (2017) Magnetoelectric effect in antiferromagnetic multiferroic Pb(Fe1/2Nb1/2)O3 and its solid solutions with PbTiO3. Phys Rev B 95:014207

    Google Scholar 

  27. Falqui A, Lampis N, Geddo-Lehmann A, Pinna G (2005) Low-temperature magnetic behavior of perovskite compounds PbFe1/2Ta1/2O3 and PbFe1/2Nb1/2O3. J Phys Chem 109:22967–22970

    CAS  Google Scholar 

  28. Choudhury RNP, Rodriguez C, Bhattacharya P, Katiyar RS, Rinaldi C (2007) Low-frequency dielectric dispersion and magnetic properties of La, Gd modified Pb(Fe1/2Ta1/2)O3 multiferroics. J Magn Magn Mater 313:253–260

    CAS  Google Scholar 

  29. Bharti C, Dutta A, Shannigrahi S, Sinha TP (2012) Electronic structure, magnetic and electrical properties of multiferroic PbFe1/2Ta1/2O3. J Magn Magn Mater 324:955–960

    CAS  Google Scholar 

  30. Lampis N, Franchini C, Satta G, Geddo-Lehmann A, Massidda S (2004) Electronic structure of PbFe1/2Ta1/2O3: crystallographic ordering and magnetic properties. Phys Rev B 69:064412

    Google Scholar 

  31. Zhu WZ, Kholkin A, Mantas PQ, Baptista JL (2000) Preparation and characterisation of Pb(Fe1/2Ta1/2)O3 relaxor ferroelectric. J Eur Ceram Soc 20:2029–2034

    CAS  Google Scholar 

  32. Choi SW, Shrout RTR, Jang SJ, Bhalla AS (1989) Dielectric and pyroelectric properties in the Pb(Mg1/3Nb2/3)O3–PbTiO3 system. Ferroelectrics 100(1):29–38

    CAS  Google Scholar 

  33. Feng Z, Zhao X, Luo H (2006) Composition and orientation dependence of dielectric and piezoelectric properties in poled Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals. J Appl Phys 100:024104

    Google Scholar 

  34. Swartz SL, Shrout TR (1982) Fabrication of perovskite lead magnesium niobate. Mater Res Bull 17:1245–1250

    CAS  Google Scholar 

  35. Ernst R, Bodenhausen S, Wokaun A (1987) Principles of NMR in One and two dimensions. Oxford University Press, New York

    Google Scholar 

  36. Kumar MM, Srinivas A, Surynarayana SV, Kumar GS, Bhimasankaram T (1998) An experimental setup for dynamic measurement of magnetoelectric effect. Bull Mater Sci 21:251–255

    CAS  Google Scholar 

  37. Shvartsman VV, Kleemann W, Dec J, Xu ZK, Lu SG (2006) Diffuse phase transition in BaTi1−xSnxO3 ceramics: an intermediate state between ferroelectric and relaxor behavior. J Appl Phys 99:124111

    Google Scholar 

  38. Bogs M, Beige H, Pitzius P, Schmitt H (1992) Linear and nonlinear dielectric, elastic and electromechanical properties of Pb(Sc1/2Ta1/2)O3 ceramics. Ferroelectrics 126(1):197–202

    CAS  Google Scholar 

  39. Choi SW, Shrout TR, Jang SJ, Bhalla AS (1989) Morphotropic phase boundary in Pb(Mg1/3Nb2/3)O3–PbTiO3 system. Mater Lett 8(6–7):253–255

    CAS  Google Scholar 

  40. Geddo-Lehmann A, Sciau P (1999) Ferroelastic symmetry changes in the perovskite PbFe0.5Ta0.5O3. J Phys Condens Matter 11:1235–1245

    Google Scholar 

  41. Nomura S, Takabayashi H, Nakagawa T (1968) Dielectric and magnetic properties of Pb(Fe1/2Ta1/2)O3. Jpn J Appl Phys 7:600–604

    CAS  Google Scholar 

  42. Santos IA, Eiras JA (2001) Phenomenological description of the diffuse phase transition in ferroelectrics. J Phys Condens Matter 13:11733–11740

    CAS  Google Scholar 

  43. Zagorodniy YuO, Kuzian RO, Kondakova IV, Maryško M, Chlan V, Štěpánková H, Olekhnovich NM, Pushkarev AV, Radyush YuV, Raevski IP, Zalar B, Laguta VV, Stephanovich VA (2018) Chemical disorder and 207Pb hyperfine fields in the magnetoelectric multiferroic Pb(Fe1/2Sb1/2)O3 and its solid solution with Pb(Fe1/2Nb1/2)O3. Phys Rev Mater 2:014401

    CAS  Google Scholar 

  44. Kouřil K, Chlan V, Štĕpánková H, Řezníček R, Laguta VV, Raevski IP (2015) NMR study of multiferroic iron niobate perovskites. Acta Phys Pol A 127(2):234–236

    Google Scholar 

  45. Bedanta S, Kleemann W (2009) Supermagnetism. J Phys D Appl Phys 42:013001

    Google Scholar 

  46. Wiekhorst F, Shevchenko E, Weller H, Kötzler J (2003) Anisotropic superparamagnetism of monodispersive cobalt–platinum nanocrystals. Phys Rev B 67:224416

    Google Scholar 

  47. Opechowski W (1937) On the exchange interaction in magnetic crystals. Physica 4:181

    CAS  Google Scholar 

  48. Schmidt H-J, Lohmann A, Richter J (2011) Eighth-order high-temperature expansion for general Heisenberg Hamiltonians. Phys Rev B 84:104443

    Google Scholar 

  49. Lohmann A, Schmidt H-J, Richter J (2014) Tenth-order high-temperature expansion for the susceptibility and the specific heat of spin-Heisenberg models with arbitrary exchange patterns: application to pyrochlore and kagome magnets. Phys Rev B 89:014415

    Google Scholar 

  50. Raevski IP, Titov VV, Malitskaya MA et al (2014) Studies of ferroelectric and magnetic phase transitions in multiferroic PbFe0.5Ta0.5O3–PbTiO3 solid solution ceramics. J Mater Sci 49:6459–6466. https://doi.org/10.1007/s10853-014-8376-z

    Article  CAS  Google Scholar 

  51. Raevski IP, Molokeev MS, Misyul SV et al (2015) Studies of ferroelectric and magnetic phase transitions in multiferroic PbFe0.5Ta0.5O3. Ferroelectrics 475(1):52–60

    CAS  Google Scholar 

  52. Cho SY, Kim JS, Jang MS (2006) Dielectric, ferroelectric and ferromagnetic properties of 0.8PbFe0.5Ta0.5O3–0.2PbTiO3 ceramics. J Electroceram 16:369–372

    CAS  Google Scholar 

  53. Nan CW, Bichurin MI, Dong S, Viehland D, Srinivasan G (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys 103:031101

    Google Scholar 

  54. Laguta V, Rosa J, Jastrabik L, Blinc R, Cevc P, Zalar B, Remskar M, Raevskaya S, Raevski I (2010) 93Nb NMR and Fe3+ EPR study of local magnetic properties of magnetoelectric Pb(Fe1/2Nb1/2)O3. Mater Res Bull 45:1720–1727

    CAS  Google Scholar 

  55. Battle PD, Gibb T, Herod A, Kim S-H, Munns P (1995) Investigation of magnetic frustration in A2FeMO6 (A = Ca, Sr, Ba; M = Nb, Ta, Sb) by magnetometry and Mössbauer spectroscopy. J Mater Chem 5:865–870

    Google Scholar 

  56. Battle PD, Gibb T, Herod A, Hodges J (1995) Sol–gel synthesis of the magnetically frustrated oxides Sr2FeSbO6 and SrLaFeSnO6. J Mater Chem 5:75–78

    CAS  Google Scholar 

  57. Blinc R, Laguta VV, Zalar B, Zupancic B, Itoh M (2008) O17 and 93Nb NMR investigation of magnetoelectric effect in Pb(Fe1/2Nb1/2)O3. J Appl Phys 104:084105

    Google Scholar 

  58. Kuzian RO, Kondakova IV, Dare AM, Laguta VV (2014) Magnetic interactions in disordered perovskite PbFe1/2Nb1/2O3 and related compounds: dominance of nearest-neighbor interaction. Phys Rev B 89:024402

    Google Scholar 

  59. Raevski IP, Kubrin SP, Raevskaya SI, Sarychev DA, Prosandeev SA, Malitskaya MA (2012) Magnetic properties of PbFe1/2Nb1/2O3: Mössbauer spectroscopy and first-principles calculations. Phys Rev B 85:224412

    Google Scholar 

  60. Diaz S, Suárez N, Faloh J, Sánchez J, Leccabue F et al (1997) Magnetic properties of PbFe12O19 hexaferrites powders obtained by metallorganic decomposition. Le Journal de Physique IV 07(C1):C1-333–C1-334

    Google Scholar 

  61. Yang N, Yang H, Jia J, Pang X (2007) Formation and magnetic properties of nanosized PbFe12O19 particles synthesized by citrate precursor technique. J Alloys Compd 438:263–267

    CAS  Google Scholar 

  62. Chaudhury S, Rakshit SK, Parida SC et al (2008) Studies on structural and thermo-chemical behavior of MFe12O19(s) (M = Sr, Ba and Pb) prepared by citrate–nitrate gel combustion method. J Alloys Compd 455:25–30

    CAS  Google Scholar 

  63. Bezlepkin AA, Kuntsevich SP, Kostyukov VI (2015) Orientational and relaxation features of the dynamic magnetic susceptibility of PbFe12O19 upon transition from the magnetically ordered to paramagnetic state. Phys Solid State 57:2213–2216

    CAS  Google Scholar 

  64. Pullar RC (2012) Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog Mater Sci 57:1191–1334

    CAS  Google Scholar 

  65. Albanese G, Díaz-Castañón S, Leccabue F, Watts BE (2000) Mössbauer and magnetic investigation of scandium and indium substituted PbFe12O19 hexagonal ferrite. J Mater Sci 35:4415–4420. https://doi.org/10.1023/A:1004869310024

    Article  CAS  Google Scholar 

  66. Maryško M, Frait Z, Krupička S (1997) FMR and static magnetic properties of gallium substituted magnetoplumbite. J. Phys. IV (France) 7:C1-347–C1-348

    Google Scholar 

  67. Perekalina TM, Vinnik MA, Zvereva RI, Shchurova AD (1971) Magnetic properties of hexagonal ferrites with weak exchange coupling between sublattices. Sov Phys JETP 32:813–814

    Google Scholar 

  68. Glinchuk MD, Eliseev EA, Morozovska AN, Blinc R (2008) Giant magnetic effect induced by intrinsic surface stress in ferroic nanorods. Phys Rev B 77:024106

    Google Scholar 

Download references

Acknowledgements

We thank A. N. Morozovska and E. A. Eliseev for critical remarks and A. E. Likhtin for technical assistance.

Funding

Funding was provided by National Academy of Sciences of Ukraine (Projects III-8-16 and 44/18-H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. O. Kuzian.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Magnetization analysis

The solid solutions are materials with perovskite structure ABO3. We may rewrite the chemical formula as (PFT)x(PMN–PT)1−x = PbFex/2Tax/2Mg0.7(1−x)/3Nb1.4(1−x)/3Ti0.3(1−x)O3. Magnetic ions Fe and nonmagnetic M = Ta, Mg, Nb, Ti occupy the sites of cubic sublattice B with the percentage given by the corresponding subscript in the formula. The Fe ions may be distributed randomly or form some kind of short- or long-range chemical order. Evidence for partial chemical ordering in the B sublattice of complex perovskites comes from experiments [54,55,56,57] and theory [20,21,22, 58, 59]. Our NMR studies (see above) confirm the nonuniform distribution of Fe in the B sublattice.

Magnetic measurements for (PFT)x(PMN–PT)1−x with x = 0.1, 0.2, 0.3 (Fig. 10) show that these samples are in the paramagnetic state in the studied temperature range. Thus, we omitted any additional investigations of these samples and focused our attention on samples with x = 0.4 and 0.5.

Figure 10
figure 10

Magnetization dependence on magnetic field for solid solution (PFT)x(PMN–PT)1−x for x = 0.1 (a), 0.2 (b) and 0.3 (c) at different temperatures

We assume that a part of Fe3+ ions xFe < x/2 contribute to the paramagnetic response χp(T), another part, xs= x/2 − xFe, participates in superparamagnetic response. The Curie constant

$$ C_{p} = N_{p} \frac{{\left( {g\mu_{B} } \right)^{2} S_{Fe} \left( {S_{Fe} + 1} \right)}}{{3k_{B} }} $$

gives the number Np of Fe spins (per 1 g of the material) in the paramagnetic state; μB is Bohr magneton. Figure 8 shows that these numbers are very close for both samples Np ≈ 2.8 × 1020. Using the molar mass of the solid solution mM(x), we find xFe = mM(x)Np/NA ≈ 0.16 for both samples, NA is the Avogadro number.

After that, we fit M(H) curves by the sum of paramagnetic and superparamagnetic contributions (cf. Eq.~(3) from Ref. [45]) given by Eq. (2).

We assume that the distribution of superspin moments is sharply peaked at the value μs(T) (i.e., all superspins are equal). Noting that L(x) → 1, for x → ∞, and \( \left. {\frac{\partial L(x)}{\partial x}} \right|_{x = 0} = \frac{1}{3} \), we may obtain the superspin moment value, and the number of superspins

$$ \begin{aligned} \mu_{\text{s}} \left( T \right) & = \frac{{3k_{\text{B}} T}}{{M_{\text{s}} \left( {\infty ,T} \right)}}\left. {\frac{{\partial M_{\text{s}} \left( {H,T} \right)}}{\partial H}} \right|_{H = 0} \\ N_{\text{s}} & = \frac{{M_{\text{s}} \left( {\infty ,T} \right)}}{{\mu_{s} \left( T \right)}}, \\ \end{aligned} $$
(6)

from the slope of the superparamagnetic contribution to the isotherm curve at the origin \( \left. {\frac{{\partial M_{s} \left( {H,T} \right)}}{\partial H}} \right|_{H = 0} \) = (7.5 ± 0.6) × 10−4 emu (g Oe)−1 and saturated value of the superparamagnetic magnetization at large field Ms(∞,T) = 0.240 ± 0.003 emu g−1, for T = 293 K. For the other isotherms, we find (assuming that Ns does not change with T)

$$ \mu_{\text{s}} \left( T \right) = \frac{{M_{\text{s}} \left( {\infty ,T} \right)}}{{N_{\text{s}} }}, $$
(7)

where Ms(∞,T) = 0.323 ± 0.003, 0.385 ± 0.003 emu g−1, for T = 193 K, 120 K.

Equations (6), (7) allow to find the number Ns and the value μs(T) for our samples. The M(H) curves for 04PFT sample are well fitted by Eq. (2) with the parameter values, Ns = 6.3 × 1014, μs(T)/μB = 6.6 × 104, 5.5 × 104, 4.1 × 104 for T = 120, 193, 293 K, respectively.

Assuming that the superspin moments display a mean-field like temperature dependence \( \mu_{\text{s}} (T) = \mu_{\text{s}} (0)\sqrt {1 - T/T_{\text{c}} } \), we obtain μs(0)/μB ≈ 7.9 × 104, Tc ≈ 400 K.

For x = 0.5, \( \left. {\frac{{\partial M_{s} \left( {H,293} \right)}}{\partial H}} \right|_{H = 0} \) = 1.5 × 10−4 emu (g Oe)−1, Ms(∞,T) = 0.089, 0.072, 0.058 emu g−1 for T = 120, 193, 293 K, respectively. It gives Ns= 1.8 · 1014, μs(T)/μB= 4.8 × 104, 4.3 × 104, 3.5 × 104 for T = 120, 193, 293 K, μs(0)/μB≈ 5.5 × 104, Tc ≈ 490 K.

Let us consider the possibility to explain the superparamagnetism of our samples by magnetic impurity phases. In Refs. [50, 51], the hysteresis loops in PFT and solid solutions PFT–PbTiO3 were supposed to be due to the presence of lead hexaferrite (magnetoplumbite) PbFe12O19. At room temperature, the saturation magnetization of the hexaferrite is ~ 50 emu g−1 [60, 61], or 0.88μB per Fe spin. Thus, ns12 = 4.7 × 104 of Fe spins in a particle of PbFe12O19 would have a magnetic moment μs(T)/μB = 4.1 × 104 at T = 293 K that would explain the superparamagnetism of 04PFT sample (see fourth row of Table 2). The size of the particle would be ~ 110 Å, because the volume of PbFe12O19 unit cell is 695 Å3 [62] and it contains 2 formula units, i.e., 24 Fe ions. Then the volume fraction of PbFe12O19 in our sample would be 0.7% and the mass fraction—0.48%; it can not be detected by XRD. But, as we have mentioned in the “Discussion” section, such a small fraction of the magnetic impurity phase can not produce appreciable ME response for two-phase composite material [53]. Also, against the presence of this impurity in our samples is the fact that the Curie temperature of bulk PbFe12O19 is 720 K [60, 63], which can be reduced in nanoparticles, but seems to be still much larger than Tc= 400–490 K found by us. If nonmagnetic ions substitute for Fe in the hexaferrite, the Curie temperature and the saturation magnetization are reduced dramatically [64,65,66,67]. In order to explain the superparamagnetism in our samples by such a diluted magnetoplumbite impurity, we would have to assume a larger fraction of the impurity phase, which is not observed by XRD.

In Ref. [52], the pyrochlore Pb3FeTaO7 impurity was supposed to be responsible for room-temperature hysteresis in PFT–PT solid solutions. Pb3FeTaO7 has 8 formula units in the cubic unit cell with a = 10.5 Å. The saturation magnetization at room temperature is ~ 2.7 emu g−1. We obtain ns,pyr = 8.8 · 104 of Fe spins in a particle. The particle size is 233 Å, the volume fraction is ~ 7%, and the mass fraction is 9%. But our samples have no more than 2.4% of the pyrochlore admixture.

Therefore, neither PbFe12O19 nor Pb3FeTaO7 can be responsible for the magnetism and magnetoelectricity of the considered materials.

Magnetoelectric coupling

Within a phenomenological Landau–Ginzburg–Devonshire approach, linear and biquadratic ME couplings contribution to the system free energy are described by the terms μijPiMj and ξijklPiPjMkMl, respectively (P is polarization and M is magnetization, and μij and ξijkl are corresponding tensors of linear and biquadratic ME effects, respectively) [10, 19, 68]. In ceramics, the elements of the tensors are averaged and we are dealing with scalar LGD equations. If we start the description from the symmetric paraelectric paramagnetic phase, we should retain only biquadratic ME coupling

$$ F = F_{\text{P}} + F_{\text{M}} + F_{\text{ME}} , $$
(8)
$$ F_{\text{ME}} = \frac{{\xi_{\text{MP}} }}{2}M^{2} P^{2} , $$
(9)

where ξMP is the coupling parameter that is assumed to weakly depend on temperature. The terms FP and FM depend only on polarization and magnetization, respectively. For the second-order phase transitions they have the usual form in SI units system

$$ F_{\text{P}} = \frac{{\alpha_{\text{P}} }}{2}P^{2} + \frac{{\beta_{\text{P}} }}{4}P^{4} - {\text{PE}}, $$
(10)
$$ F_{\text{M}} = \frac{{\alpha_{\text{M}} }}{2}M^{2} + \frac{{\beta_{\text{M}} }}{4}M^{4} - \mu_{0} MH, $$
(11)

where only αP,M have strong temperature dependence α ~ (T – TC). For small external fields, we may write the solutions of Eq. (8) in the form

$$ P = P_{\text{s}} + \varepsilon_{0} \chi_{\text{E}} E, $$
(12)
$$ M = M_{\text{s}} + \chi_{\text{M}} H, $$
(13)

where Ps, Ms are spontaneous polarization and magnetization that become nonzero in the ordered phases; χE,M are dielectric and magnetic susceptibilities. Then ME coupling has the form

$$ F_{\text{ME}} = \frac{{\xi_{\text{MP}} }}{2}\left( {M_{\text{s}} + \chi_{\text{M}} H} \right)^{2} \left( {P_{\text{s}} + \varepsilon_{0} \chi_{E} E} \right)^{2} , $$
(14)

that allows us to express various magnetoelectric coefficients via ξMP

$$ \begin{aligned} \alpha \equiv - \frac{{\partial^{2} F}}{\partial E\partial H} = - 2\xi_{\text{MP}} M_{\text{s}} \chi_{\text{M}} P_{\text{s}} \varepsilon_{0} \chi_{\text{E}} , \\ \beta \equiv - \frac{{\partial^{3} F}}{{\partial E\left( {\partial H} \right)^{2} }} = - 2\xi_{\text{MP}} \left( {\chi_{\text{M}} } \right)^{2} P_{\text{s}} \varepsilon_{0} \chi_{\text{E}} , \\ \gamma \equiv - \frac{{\partial^{3} F}}{{\left( {\partial E} \right)^{2} \partial H}} = - 2\xi_{\text{MP}} M_{\text{s}} \chi_{\text{M}} \left( {\varepsilon_{0} \chi_{\text{E}} } \right)^{2} . \\ \end{aligned} $$
(15)

Due to the superparamagnetic contribution, the value of β will increase with temperature lowering according to the temperature dependence of magnetic susceptibility as [χM(T)]2 ~ 1/T2.

Using the value of β(T) obtained from experiments, we can estimate the biquadratic ME coefficient ξMP from the equation

$$ \xi_{MP} = - \frac{\beta \left( T \right)}{{2P_{s} \left( T \right)\varepsilon_{0} \chi_{E} \left( T \right)\left[ {\chi_{M} \left( T \right)} \right]^{2} }}. $$
(16)

We got ξMP ≈ –2.9 × 10−5 J m3 A−2 C−2 for the solid solution with x = 0.4 by substituting the room temperature values of parameters: β ≈ 0.15 × 10−15 s A−1, the spontaneous electric polarization Ps≈3.0 μC cm−2, susceptibilities dielectric χFE ≈2000, and magnetic (mass) χM ≈0.63 emu (g kOe)−1. For x = 0.5, we have obtained ξMP≈ − 0.0014 J m3 A−2 C−2, using β ≈ 0.54 × 10−15 s A−1, Ps≈ 4.4 μC cm−2, χFE ≈2000, χM ≈0.142 emu (g kOe)−1. All parameters were determined from the data of our experiments reported in previous sections.

Let us note that Eq. (11) is appropriate for the description of the paramagnetic phase in small fields where magnetization is proportional to H. For the description of the superparamagnetic phase at higher fields, we should consider another expression for the free energy part FM

$$ F_{\text{M}} = - N_{\text{s}} T\ln Z, $$
(17)

where \( Z = {{\sinh \left[ {\frac{{2\left( {S + 1} \right)\mu_{\text{s}} \left( T \right)H}}{{2Sk_{\text{B}} T}}} \right]} \mathord{\left/ {\vphantom {{\sinh \left[ {\frac{{2\left( {S + 1} \right)\mu_{\text{s}} \left( T \right)H}}{{2Sk_{\text{B}} T}}} \right]} {\sinh \left[ {\frac{{\mu_{\text{s}} \left( T \right)H}}{{2Sk_{\text{B}} T}}} \right]}}} \right. \kern-0pt} {\sinh \left[ {\frac{{\mu_{\text{s}} \left( T \right)H}}{{2Sk_{\text{B}} T}}} \right]}} \) is the partition function for an isolated spin S in the magnetic field H. For S ≫ 1 this gives \( M_{\text{s}} \left( {H,T} \right) = - {{\partial F_{\text{M}} } \mathord{\left/ {\vphantom {{\partial F_{\text{M}} } {\partial H}}} \right. \kern-0pt} {\partial H}} \), Eq. (2). We will neglect the contribution from paramagnetic phase. Then instead of Eq. (14) we have

$$ F_{\text{ME}} = \frac{{\xi_{\text{MP}} }}{2}\left( {P_{\text{s}} + \varepsilon_{0} \chi_{\text{E}} E} \right)^{2} \left[ {M_{\text{s}} \left( H \right)} \right]^{2} $$
(18)

and

$$ \begin{aligned} P = - \frac{\partial F}{\partial E} = P_{\text{P}} + \Delta P_{\text{ME}} , \hfill \\ \Delta P_{\text{ME}} = - \xi_{\text{MP}} P_{\text{s}} \varepsilon_{0} \chi_{\text{E}} \left[ {M\left( H \right)} \right]^{2} \hfill \\ \end{aligned} $$
(19)

In the experiment, the ME effect is manifested as a polarization Pac induced by a small ac magnetic field hac under application of dc field Hdc. With using collinear dc and ac magnetic fields H = Hdc + hac sin ωt, we obtain a generalization of Eq. (4)

$$ \begin{aligned} \Delta P_{ME} &= - \xi_{MP} P_{s} \varepsilon_{0} \chi_{E} \left[ {M\left( {H_{0} + h_{0} \sin\omega t} \right)} \right]^{2} \\ & = - \xi_{MP} P_{s} \varepsilon_{0} \chi_{E} \left[ {M\left( {H_{0} } \right)^{2} + 2M\left( {H_{0} } \right)\left. {\frac{\partial M\left( H \right)}{\partial H}} \right|_{{H = H_{0} }} h_{0} \sin\omega t} \right] \\ P_{ac} &= - \xi_{MP} P_{s} \varepsilon_{0} \chi_{E} 2M\left( {H_{0} } \right)\left. {\frac{\partial M\left( H \right)}{\partial H}} \right|_{{H = H_{0} }} h_{0} \sin\omega t. \\ \end{aligned} $$
(20)

Hence, the generalization of Eq. (5) shows that the amplitude of magnetoelectric current IME is proportional to dM2/dH (see inset in Fig. 9a).

The above consideration can only provide a qualitative agreement with the experiment. A more realistic theory should take into account at least a distribution of moment values.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glinchuk, M.D., Kuzian, R.O., Zagorodniy, Y.O. et al. Room-temperature ferroelectricity, superparamagnetism and large magnetoelectricity of solid solution PbFe1/2Ta1/2O3 with (PbMg1/3Nb2/3O3)0.7(PbTiO3)0.3. J Mater Sci 55, 1399–1413 (2020). https://doi.org/10.1007/s10853-019-04158-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04158-4

Navigation