Skip to main content

Ferroelectric and Dielectric Properties of Solid Solution Ceramics Based on Bismuth Ferrite and Lead Ferroniobate Multiferroics with Germanium Dioxide Additive

  • Conference paper
  • First Online:
Physics and Mechanics of New Materials and Their Applications (PHENMA 2023)

Abstract

Ferroelectric and dielectric characteristics of multiferroics solid solutions ceramics of the (1 – x)BiFeO3 − xPbFe0.5Nb0.5O3 composition with x = 0.3, modified superstoichiometrically with GeO2 in amounts (0.5–1.0) wt.%, were studied. It is noted that the temperature dependencies of the real part of the complex dielectric permittivity and the dielectric loss tangent exhibit anomalies in the vicinity of the ferroelectric phase transition, while the nature of their changes in the vicinity of the latter allows us to classify the studied objects as ferroelectrics with a diffuse phase transition. The ferroelectric properties of the modified objects at room temperature indicate that it was not possible to obtain saturated dielectric hysteresis loops for all samples in the analyzed field range. This is apparently due to high coercive fields indicating improved electrical strength of ceramics. In this regard, it is advisable to use materials, based on 0.7BiFeO3 − 0.3PbFe0.5Nb0.5O3 solid solutions, developed during the research, to create and study new multifunctional media with special electrophysical parameters, promising for applications in innovative areas of electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dadami, S.T., et al.: Structural, dielectric and conductivity studies of PbFe0.5Nb0.5O3–BiFeO3 multiferroic solid solution. J. Alloys Compd. 724, 787–798 (2017). https://doi.org/10.1016/j.jallcom.2017.07.126

  2. Li, H., et al.: Coexistence of relaxor behavior and ferromagnetic order in multiferroic Pb(Fe0.5Nb0.5)O3 – BiFeO3 solid solution. J. Mater. Chem. C. 8(38), 13306–13318 (2020). https://doi.org/10.1039/D0TC03505J

  3. Dadami, S.T., Shivaraja, I., Deshpande, S.K., Rayaprol, S., Angadi, B.: BiFeO3 induced enhancement in multiferroic properties of PbFe0.5Nb0.5O3. Ceram. Int. 44(16), 20449–20456 (2018). https://doi.org/10.1016/j.ceramint.2018.08.039

  4. Stoch, A., Stoch, P.: Magnetoelectric properties of 0.5BiFeO3 – 0.5Pb(Fe0.5Nb0.5)O3 solid solution. Ceram. Int. 44(12), 14136–14144 (2018). https://doi.org/10.1016/j.ceramint.2018.05.013

  5. Zhidel, K.M., Pavlenko, A.V.: Structure and optical properties of STO/Si and BFO-PFN/STO/Si heterostructures obtained by RF-cathode sputtering. Ferroelectrics 590(1), 180–187 (2022). https://doi.org/10.1080/00150193.2022.2037949

    Article  CAS  Google Scholar 

  6. Zhidel, K.M., Pavlenko, A.V.: Preparation and properties of 0.5BiFeO3 – 0.5PbFe0.5Nb0.5O3 ceramics and polycrystalline films. J. Adv. Dielectr. 12(01), 2160002 (2022). https://doi.org/10.1142/S2010135X2160002X

  7. Choudhary, R.N.P., Patri, S.K.: Multiferroics: an introduction. In: AIP Conference Proceedings, pp. 263–275. American Institute of Physics (2008)

    Google Scholar 

  8. Pyatakov, A.P., Zvezdin, A.K.: Magnetoelectric and multiferroic media. Phys. Usp. 55(6), 557–581 (2012). https://doi.org/10.3367/UFNe.0182.201206b.0593

    Article  CAS  Google Scholar 

  9. Zhai, J., Xing, Z., Dong, S., Li, J., Viehland, D.: Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature. Appl. Phys. Lett. 88(6), 062510 (2006). https://doi.org/10.1063/1.2172706

    Article  CAS  Google Scholar 

  10. Tehrani, S., et al.: Magnetoresistive random access memory using magnetic tunnel junctions. Proc. IEEE 91(5), 703–714 (2003). https://doi.org/10.1109/JPROC.2003.811804

    Article  Google Scholar 

  11. Borders, W.A., et al.: Analogue spin–orbit torque device for artificial-neural-network-based associative memory operation. Appl. Phys. Express 10(1), 013007 (2016). https://doi.org/10.7567/APEX.10.013007

    Article  Google Scholar 

  12. Venevtsev, I., Gagulin, V.V., Liubimov, V.N.: Ferromagnetics. Nauka, Moscow (1982)

    Google Scholar 

  13. Kadomtseva, A.M., Popov, Y.F., Pyatakov, A.P., Vorob’Ev, G.P., Zvezdin, A.K., Viehland, D.: Phase transitions in multiferroic BiFeO3 crystals, thin-layers, and ceramics: enduring potential for a single phase, room-temperature magnetoelectric ‘holy grail’. Phase Transitions. 79(12), 1019–1042 (2006). https://doi.org/10.1080/01411590601067235

  14. Khasbulatov, S.V., et al.: Phase composition, microstructure, and thermophysical and dielectric properties of multiferroic Bi1-xDyxFeO3. Thermophys. Aeromech. 23(3), 445–450 (2016). https://doi.org/10.1134/S0869864316030148

    Article  Google Scholar 

  15. Gao, F., et al.: Preparation of La-doped BiFeO3 thin films with Fe2+ ions on Si substrates. J. Appl. Phys. 99(9), 094105 (2006). https://doi.org/10.1063/1.2195368

    Article  CAS  Google Scholar 

  16. Kalganov, D.A., Bychkov, I.V., Fediy, A.A., Glushko, I.A.: Structural and dielectric properties of the lead ferroniobate ceramic. Bull. Chelyabinsk State Univ. 7(362), 42–47 (2015)

    Google Scholar 

  17. Pavlenko, A.V., Verbenko, I.A., Shevcova, S.I., Shilkina, L.A., Yurasov, Y., Reznichenko, L.A.: Effect of modification with lithium carbonate and manganese oxide on the structure, microstructure and ferropiezoelectric properties of lead ferroniobate ceramics. Phase Transitions, Ordered States New Mater. 4, 73–81 (2013)

    Google Scholar 

  18. Boldyrev, N.A., Pavlenko, A.V., Reznichenko, L.A., Verbenko, I.A., Konstantinov, G.M., Shilkina, L.A.: Effect of lithium carbonate on the ferroelectric properties of lead ferroniobate ceramics. Inorg. Mater. 52(1), 76–82 (2016). https://doi.org/10.1134/S0020168516010015

    Article  CAS  Google Scholar 

  19. Udodov, I.A., Spiridonov, N.A., Pogibko, V.M., Prisedsky, V.V.: Synthesis of multiferroics PbFe0.5Nb0.5O3–BiFeO3 in environments with controlled vapor pressure of lead oxide. Bull. Donetsk National Tech. Univ. 4(10), 44–50 (2017)

    Google Scholar 

  20. Pollet, M., Marinel, S.: Low temperature sintering of CaZrO3 using lithium fluoride addition. J. Eur. Ceram. Soc. 23(11), 1925–1933 (2003). https://doi.org/10.1016/S0955-2219(03)00013-X

    Article  CAS  Google Scholar 

  21. Kantha, P., et al.: Effects of GeO2 addition on physical and electrical properties of BaFe0.5Nb0.5O3 ceramic. Mater. Res. Bull. 47(10), 2867–2870 (2012). https://doi.org/10.1016/j.materresbull.2012.04.098

  22. Chen, K., et al.: Effects of GeO2 addition on sintering and properties of (K0.5Na0.5)NbO3 ceramics. J. Am. Ceram. Soc. 99(5), 1681–1686 (2016). https://doi.org/10.1111/jace.14162

  23. Peng, F., Zhu, D., Yan, Q., Li, Y.: Influence of GeO2 on the microstructure and electrical properties of TiO2–Nb2O5–Ho2O3–SiO2 varistors. Mater. Chem. Phys. 243, 122638 (2020). https://doi.org/10.1016/j.matchemphys.2020.122638

    Article  CAS  Google Scholar 

  24. Zenkner, M., Jäger, L., Köferstein, R., Abicht, H.-P.: Synthesis and characterization of nanoscaled Ba(Ti1-x-ySnxGey)O3 powders and corresponding ceramics. Solid State Sci. 10(11), 1556–1562 (2008). https://doi.org/10.1016/j.solidstatesciences.2008.03.005

    Article  CAS  Google Scholar 

  25. Reznitchenko, L.A., et al.: Phase equilibrium and properties of solid solutions of PbTiO3–PbZrO3–PbNb2/3Mg1/3O3–PbGeO3 system. Inorg. Mater. 45(2), 173–181 (2009). https://doi.org/10.1134/S0020168509020125

    Article  CAS  Google Scholar 

  26. Amaral, F., Rubinger, C.P.L., Valente, M.A., Costa, L.C., Moreira, R.L.: Enhanced dielectric response of GeO2-doped CaCu3Ti4O12 ceramics. J. Appl. Phys. 105(3), 034109 (2009). https://doi.org/10.1063/1.3075909

    Article  CAS  Google Scholar 

  27. Smolenski, G.A., Chupis, I.E.: Ferroelectromagnets. Soviet. Physics Uspekhi. 25, 475–493 (1982). https://doi.org/10.1070/PU1982v025n07ABEH004570

    Article  Google Scholar 

  28. Patel, J.P., Singh, A., Pandey, D.: Nature of ferroelectric to paraelectric phase transition in multiferroic 0.8BiFeO3 – 0.2Pb(Fe1/2Nb1/2)O3 ceramics. J. Appl. Phys. 107(10), 104115 (2010). https://doi.org/10.1063/1.3428410

  29. Krainik, N.N., Khuchua, N.P., Berezhnoy, A.A., Tutov, A.G.: On the nature of phase transitions in BiFeO3–PbFe0.5Nb0.5O3 solid solutions. Soviet Physics, Solid State. 7(1), 132–142 (1965)

    Google Scholar 

  30. Bogatin, A.S., Turik, A.V.: Relaxation polarization processes in dielectrics with high through conductivity. Feniks, Rostov-on-Don (2013)

    Google Scholar 

  31. Pavlenko, A.V., Zhidel, K.M., Kubrin, S.P., Kolesnikova, T.A.: High-temperature 0.5BiFeO3–0.5PbFe0.5Nb0.5O3 multiferroic: microstructure, ferroelectric properties, and Mössbauer effect. Ceram. Int. 47(15), 21167–21174 (2021). https://doi.org/10.1016/j.ceramint.2021.04.120

Download references

Acknowledgments

The study was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation (State task in the field of scientific activity in 2023). Project No. FENW-2023–0010/(GZ0110/23–11-IF). The equipment of the Center for Collective Use of the Research Institute of Physics of the Southern Federal University “Electromagnetic, electromechanical and thermal properties of solids” was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Zhidel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhidel, K.M., Pavlenko, A.V., Glazunova, E.V., Reznichenko, L.A. (2024). Ferroelectric and Dielectric Properties of Solid Solution Ceramics Based on Bismuth Ferrite and Lead Ferroniobate Multiferroics with Germanium Dioxide Additive. In: Parinov, I.A., Chang, SH., Putri, E.P. (eds) Physics and Mechanics of New Materials and Their Applications. PHENMA 2023. Springer Proceedings in Materials, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-031-52239-0_24

Download citation

Publish with us

Policies and ethics