Skip to main content
Log in

Investigation on spinel MnCo2O4 electrode material prepared via controlled and uncontrolled synthesis route for supercapacitor application

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To analyze the impact of preparation routes on the electrochemical behavior of nanoparticles, manganese cobaltite (MnCo2O4) has been synthesized by combustion (MnC-C) and hydrothermal route (MnC-H). The structural properties of synthesized nanoparticles were characterized by X-ray diffractometer studies which confirm the formation of cubic spinel phase with average crystallite size of 26 nm for combustion route prepared and 24 nm for hydrothermal route. The FT-IR spectrum shows two strong bands observed at 651 and 559 cm−1 that are characteristic to stretching vibrations of tetrahedral and octahedral sites of spinel MnCo2O4 compounds. Elemental analysis, oxidation state, and chemical composition of these nanoparticles were examined using X-ray photoelectron spectroscopy. The morphology of synthesized nanoparticles was analyzed by SEM images. Loosely packed flake-like morphology was observed for MnC-H and typical spongy network structure with voids or pores was seen for MnC-C samples. BET analysis reveals the presence of mesopores and micropores in the prepared compounds. Influence of preparation route on capacitor behavior was evaluated by performing electrochemical characterizations such as cyclic voltammetry, chronopotentiometry, and AC impedance analysis. MnC-H exhibits a higher specific capacitance of 671 F g−1 at 5 mV s−1 scan rate compared to 510 F g−1 exhibited by MnC-C electrode material. Excellent capacitance retention of 92 % was demonstrated by MnC-H over 1000 continuous cycling. Results indicate that MnCo2O4 prepared via controlled synthesis conditions (hydrothermal) shows better performance than combustion prepared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang L, Cheng S, Ding Y, Zhu X, Wang ZL, Liu M (2012) Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. Nano Lett 12:321–325. doi:10.1021/nl203600x

    Article  Google Scholar 

  2. Zhou W, Liu J, Chen Tao, Tan KS, Jia X, Luo Z, Cong C, Yang H, Li CM, Ting Y (2011) Fabrication of Co3O4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes. Phys Chem Chem Phys 13:14462–14465. doi:10.1039/c1cp21917k

    Article  Google Scholar 

  3. Djurfors B, Broughton JN, Brett MJ, Ivey DG (2003) Microstructural characterization of porous manganese thin films for electrochemical supercapacitor applications. J Mater Sci 38:4817–4830. doi:10.1023/B:JMSC.0000004401.81145.b6

    Article  Google Scholar 

  4. Deng J-J, Deng J-C, Liu Z-L, Deng H-R, Liu B (2009) Influence of addition of cobalt oxide on microstructure and electrochemical capacitive performance of nickel oxide. J Solid State Electrochem 13:1387–1394. doi:10.1007/s10008-008-0701-5

    Article  Google Scholar 

  5. Chang J-K, Hsieh W-C, Tsai W-T (2008) Effects of the Co content in the material characteristics and supercapacitive performance of binary Mn–Co oxide electrodes. J Alloys Compd 461:667–674. doi:10.1016/j.jallcom.2007.07.092

    Article  Google Scholar 

  6. Babakhani B, Ivey DG (2011) Investigation of electrochemical behavior of Mn–Co doped oxide electrodes for electrochemical capacitors. Electrochim Acta 56:4753–4762. doi:10.1016/j.electacta.2011.03.008

    Article  Google Scholar 

  7. Wu H-Y, Wang H-W (2012) Electrochemical synthesis of nickel oxide nanoparticulate films on nickel foils for high-performance electrode materials of supercapacitors. Int J Electrochem Sci 7:4405–4417

    Google Scholar 

  8. Wang D, Li Y, Wang Q, Wang T (2012) Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors. J Solid State Electrochem 16:2095–2102. doi:10.1007/s10008-011-1620-4

    Article  Google Scholar 

  9. Hinklin TR, Azurdia J, Kim M, Marchal JC, Kumar S, Laine RM (2008) Finding spinel in all the wrong places. Adv Mater 20:1373–1375. doi:10.1002/adma.200702124

    Article  Google Scholar 

  10. Yoon T-J, Kim JS, Kim BG, Yu KN, Cho M-H, Lee J-K (2005) Multifunctional nanoparticles possessing a magnetic motor effect for drug or gene delivery. Angew Chem Int Ed 44:1068–1071. doi:10.1002/anie.200461910

    Article  Google Scholar 

  11. Marco JF, Gancedo RJ, Gracia M, Gautier JL, Rıos EI, Palmer HM, Greaves C, Berry FJ (2001) Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4. J Mater Chem 11:3087–3093. doi:10.1039/b103135j

    Article  Google Scholar 

  12. Martin de Vidales JL, Garcia-Chain P, Rojas R, Vila E, Garcia-Martinez O (1998) Preparation and characterization of spinel-type Mn–Ni–Co–O negative temperature coefficient ceramic thermistors. J Mater Sci 33:1491–1496. doi:10.1023/A:1004351809932

    Article  Google Scholar 

  13. Yokoyama T, Meguro T, Shimada Y, Tatami J, Komeya K, Abe Y (2007) Preparation and electrical properties of sintered oxides composed of Mn1.5Co(0.25+x)Ni(1.25−x)O4 with a cubic spinel structure. J Mater Sci 42:5860–5866. doi:10.1007/s10853-006-1141-1

    Article  Google Scholar 

  14. Li L, Zhang YQ, Liu XY, Shi SJ, Zhao XY, Zhang H, Ge X, Cai GF, Gu CD, Wang XL, Tu JP (2014) One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage. Electrochim Acta 116:467–474. doi:10.1016/j.electacta.2013.11.081

    Article  Google Scholar 

  15. Gomez J, Kalu EE (2013) High-performance binder-free Co–Mn composite oxide supercapacitor electrode. J Power Sources 230:218–224. doi:10.1016/j.jpowsour.2012.12.069

    Article  Google Scholar 

  16. Kim SW, Lee HW, Muralidharan P, Seo DH, Yoon WS, Kim D, Kang K (2011) Electrochemical performance and exsitu analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Res 4:505–510. doi:10.1007/s12274-011-0106-0

    Article  Google Scholar 

  17. Jiang H, Ma J, Li CZ (2012) Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors. Chem Commun 48:4465–4467. doi:10.1039/C2CC31418E

    Article  Google Scholar 

  18. Wang Z, Zhang X, Li Y, Liu ZT, Hao ZP (2013) Synthesis of graphene–NiFe2O4 nanocomposites and their electrochemical capacitive behavior. J Mater Chem A 1:6393–6399. doi:10.1039/C3TA10433H

    Article  Google Scholar 

  19. Karthikeyan K, Kalpana D, Renganathan NG (2009) Synthesis and characterizationof ZnCo2O4 nanomaterial for symmetric supercapacitor applications. Ionics 15:107–110. doi:10.1007/s11581-008-0227-y

    Article  Google Scholar 

  20. Naveen AN, Selladurai S (2014) Investigation on physiochemical properties of Mn substituted spinel cobalt oxide for supercapacitor applications. Electrochim Acta 125:404–414. doi:10.1016/j.electacta.2014.01.161

    Article  Google Scholar 

  21. Prasad KR, Miura N (2004) Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem Commun 6:1004–1008. doi:10.1016/j.elecom.2004.07.017

    Article  Google Scholar 

  22. Bordeneuve H, Tenailleau C, Guillemet-Fritsch S, Smith R, Suard E, Rousset A (2010) Structural variations and cation distributions in Mn3−xCoxO4 (0 < x < 3) dense ceramics using neutron diffraction data. Solid State Sci 12:379–386. doi:10.1016/j.solidstatesciences.2009.11.018

    Article  Google Scholar 

  23. Gautier JL, Rios E, Gracia M, Marco JF, Gancedo JR (1997) Characterisation by X-ray photoelectron spectroscopy of thin MnxCo3−xO4 (1 ≥ x ≥ 0) spinel films prepared by low-temperature spray pyrolysis. Thin Solid Films 311:51–57. doi:10.1016/S0040-6090(97)00463-X

    Article  Google Scholar 

  24. Blasse G (1963) Superexchange in the spinel structure. Some magnetic properties of oxides M2+Co2O4 and M2+Rh2O4 with spinel structure. Philips Res Rep Suppl 18:383

    Google Scholar 

  25. Kolomiets BT, Sheftel J, Kurlina E (1957) Electrical properties of some compound oxide semiconductors. Sov Phys Tech Phys 2:40–58

    Google Scholar 

  26. Wickham DG, Croft W (1958) Crystallographic and magnetic properties of several spinels containing trivalent ja-1044 manganese. J Phys Chem Solids 7:351

    Article  Google Scholar 

  27. Gubanov A (1957) Sov Phys I.C.S. Technol Phys 2:47

  28. Sutka A, Mezinskis G (2012) Sol–gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front Mater Sci 6:128–141. doi:10.1007/s11706-012-0167-3

    Article  Google Scholar 

  29. Verma S, Joshi HM, Jagadale T, Chawla A, Chandra R, Ogale S (2008) Nearly monodispersed multifunctional NiCo2O4 spinel nanoparticles: magnetism, infrared transparency and radiofrequency absorption. J Phys Chem C 112:15106–15112. doi:10.1021/jp804923t

    Article  Google Scholar 

  30. Hayashi H, Hakuta Y (2010) Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 3:3794–3817. doi:10.3390/ma3073794

    Article  Google Scholar 

  31. Zhang X, Shi W, Zhu J, Zhao W, Ma J, Mhaisalkar S, Maria TL, Yang Y, Zhang H, Hng HH, Yan Q (2010) Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res 3:643–652. doi:10.1007/s12274-010-0024-6

    Article  Google Scholar 

  32. Meher SK, Rao GR (2011) Ultralayered Co3O4 for high-performance supercapacitor applications. J Phys Chem C 115:15646–15654. doi:10.1021/jp201200e

    Article  Google Scholar 

  33. Du W, Liu R, Jiang Y, Lu Q, Fan Y, Gao F (2013) Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. J Power Sources 227:101–105. doi:10.1016/j.jpowsour.2012.11.009

    Article  Google Scholar 

  34. Duan BR, Cao Q (2012) Hierarchically porous Co3O4 film prepared by hydrothermal synthesis method based on colloidal crystal template for supercapacitor application. Electrochim Acta 64:154–161. doi:10.1016/j.electacta.2012.01.004

    Article  Google Scholar 

  35. Tholkappiyan R, Vishista K (2014) Influence of lanthanum on the optomagnetic properties of zinc ferrite prepared by combustion method. Physica B 448:177–183. doi:10.1016/j.physb.2014.04.022

    Article  Google Scholar 

  36. Subramanian V, Hall SC, Smith PH, Rambabu B (2004) Mesoporous anhydrous RuO2 as a supercapacitor electrode material. Solid State Ionics 175:511–515. doi:10.1016/j.ssi.2004.01.070

    Article  Google Scholar 

  37. Vu D, Li X, Li Z, Wang C (2013) Phase-structure effects of electrospun TiO2 nanofiber membranes on As(III) adsorption. J Chem Eng Data 58:71–77. doi:10.1021/je301017q

    Article  Google Scholar 

  38. Luo W, Hu X, Sun Y, Huang Y (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22:8916–8921. doi:10.1039/c2jm00094f

    Article  Google Scholar 

  39. Rojas RM, Vila E, García O, de Vidales JLM (1994) Thermal behaviour and reactivity of manganese cobaltites MnxCo3−xO4(0.0 ≤ x ≤ 1.0) obtained at low temperature. J Mater Chem 4:1635–1639. doi:10.1039/jm9940401635

    Article  Google Scholar 

  40. Tan BJ, Klabunde KJ, Sherwood PMA (1991) XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. J Am Chem Soc 113:855–861. doi:10.1021/ja00003a019

    Article  Google Scholar 

  41. Xia X-H, Tu J-P, Wang X-L, Gua C-D, Zhao X-B (2011) Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material. Chem Commun 47:5786–5788. doi:10.1039/C1CC11281C

    Article  Google Scholar 

  42. Jiang H, Zhao T, Yan C, Ma J, Li C (2010) Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances. Nanoscale 2:2195–2198. doi:10.1039/C0NR00257G

    Article  Google Scholar 

  43. Kong L-B, Lu C, Liu M-C, Luo Y-C, Kang L, Li X, Walsh FC (2014) The specific capacitance of sol–gel synthesised spinel MnCo2O4 in analkaline electrolyte. Electrochim Acta 115:22–27. doi:10.1016/j.electacta.2013.10.089

    Article  Google Scholar 

  44. Ding R, Qi L, Wang H (2012) A facile and cost-effective synthesis of mesoporous NiCo2O4 nanoparticles and their capacitive behavior in electrochemical capacitors. J Solid State Electrochem 16:3621–3633. doi:10.1007/s10008-012-1798-0

    Article  Google Scholar 

  45. Meher SK, Rao GR (2011) Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co3O4. J Phys Chem C 115:25543–25556. doi:10.1021/jp209165v

    Article  Google Scholar 

  46. Wei T-Y, Chen C-H, Chang K-H, Lu S-Y, Hu C-C (2009) Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route. Chem Mater 21:3228–3233. doi:10.1021/cm9007365

    Article  Google Scholar 

  47. Zhang Y, Luo L, Zhang Z, Ding Y, Liu S, Deng D, Zhao H, Chen Y (2014) Synthesis of MnCo2O4 nanofibers by electrospinning and calcination: application for a highly sensitive non-enzymatic glucose sensor. J Mater Chem B 2:529–535. doi:10.1039/C3TB21288B

    Article  Google Scholar 

  48. Srinivasan V, Weidner JW (2002) Capacitance studies of cobalt oxide films formed via electrochemical precipitation. J Power Sources 108:15–20. doi:10.1016/S0378-7753(01)01012-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. S. Venkatesh for XPS measurement at MNCF, Centre for Nano Science and Engineering (CeNSE), IISc Bangalore, India and also thank to Mr. S Karuppusamy, Research scholar for FT-IR measurement at Department of Physics, Anna University, Chennai-25, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vishista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tholkappiyan, R., Naveen, A.N., Sumithra, S. et al. Investigation on spinel MnCo2O4 electrode material prepared via controlled and uncontrolled synthesis route for supercapacitor application. J Mater Sci 50, 5833–5843 (2015). https://doi.org/10.1007/s10853-015-9132-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9132-8

Keywords

Navigation