Skip to main content
Log in

Dispersion of surface-modified nano-Fe3O4 with poly(vinyl alcohol) in chiral poly(amide-imide) bearing pyromellitoyl-bis-l-phenylalanine segments

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, iron oxide (Fe3O4) nanoparticles (NPs) were treated with biodegradable poly(vinyl alcohol) (PVA) as a coupling agent, which could improve the organic functional groups on the surface of Fe3O4 NPs. Then, an optically active poly(amide-imide) (PAI) was produced through a solution polycondensation of N,N-(pyromellitoyl)-bis-l-phenylalanine with 4,4-diaminodiphenyl sulfone. Finally, PAI/modified-Fe3O4 nanocomposites (NCs) containing 2, 4, and 8 % of NPs were successfully fabricated using ultrasonic irradiation technique as a green and safe synthetic method. The effect of PVA coupling agent on the properties and morphology of Fe3O4 NPs and the interaction between Fe3O4 NPs and PAI chains were studied by different techniques. Fourier transform infrared spectroscopy and X-ray diffraction pattern showed that the PVA was coated on the surface of Fe3O4 NPs. Thermogravimetric analysis indicated that the thermal stability of NCs was enhanced in comparison with the neat polymer, and microscopy electron analyses showed homogenous dispersion of modified Fe3O4 NPs in the PAI matrix

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ghanbari D, Salavati-Niasari M, Ghasemi-Kooch M (2014) A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite. J Ind Eng Chem 20:3970–3974

    Article  Google Scholar 

  2. Khandanlou R, Bin Ahmad M, Shameli K, Kalantari K (2014) Investigation of the role of the reductant on the size control of Fe3O4 nanoparticles on rice straw. BioResources 9:642–655

    Google Scholar 

  3. Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:379–415

    Google Scholar 

  4. Chin SF, Pang SC, Tan CH (2011) Green synthesis of magnetite nanoparticles (via thermal decomposition method) with controllable size and shape. J Mater Environ Sci 2:299–302

    Google Scholar 

  5. Guo Q, Guo P, Li J, Yin H, Liu J, Xiao F, Shen D, Li N (2014) Fe3O4 CNTs nanocomposites: Inorganic dispersant assisted hydrothermal synthesis and application in lithium ion batteries. J Solid State Chem 213:104–109

    Article  Google Scholar 

  6. Yang X, Chez Y, Yuan R, Chen G, Blanco E (2008) Folate-encoded and Fe3O4-loaded polymeric micelles for dual targeting of cancer cells. Polymer 49:3477–3485

    Article  Google Scholar 

  7. Zeng T, Yang L, Hudson R, Song G (2001) Fe3O4 nanoparticle-supported copper(I) pybox catalyst: magnetically recoverable catalyst for enantioselective direct-addition of terminal alkynes to imines. Org Lett 13:442–445

    Article  Google Scholar 

  8. Schalow T, Brandt B, Starr DE, Laurin M, Schauermann S, Shaikhutdinov SK, Libud J, Freund HJ (2006) Oxygen-induced restructuring of a Pd/Fe3O4 model catalyst. Catal Lett 107:189–196

    Article  Google Scholar 

  9. Hariharan S, Gass J (2005) Superparamagnetism and magneto-caloric effect (MCE) in functional magnetic nanostructures. Rev Adv Mater Sci 10:394–402

    Google Scholar 

  10. Purushotham S, Chang PEJ, Rumpe H, Kee IHC, Ng RTH, Chow PKH, Tan CK, Ramanujan RV (2009) Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy. Nanotechnology 20(30):305101

    Article  Google Scholar 

  11. Novakova AA, Lanchinskaya VY, Volkov AV, Gendlerb TS, Kiseleva TY, Moskvina MA, Zezin SB (2003) Magnetic properties of polymer nanocomposites containing iron oxide nanoparticles. J Magn Magn Mater 258–259:354–357

    Article  Google Scholar 

  12. Srivastava M, Singh J, Yashpal M, Gupta DK, Mishra RK, Tripathi S, Ojha AK (2012) Synthesis of superparamagnetic bare Fe3O4 nanostructures and core/shell (Fe3O4/alginate) nanocomposites. Carbohydr Polym 89:821–829

    Article  Google Scholar 

  13. Ma P, Xiao C, Li L, Shi H, Zhu M (2008) Facile preparation of ferromagnetic alginate-g-poly(vinyl alcohol) microparticles. Eur Polym J 44:3886–3889

    Article  Google Scholar 

  14. Qin Q, Liu Y, Chen SC, Zhai FY, Jing XK, Wang YZ (2012) Electrospinning fabrication and characterization of poly(vinyl alcohol)/layered double hydroxides composite fibers. J Appl Polym Sci 126:1556–1563

    Article  Google Scholar 

  15. Huang S, Cen X, Zhu H, Yang Z, Yang Y, Tjiu WW, Liu T (2001) Facile preparation of poly(vinyl alcohol) nanocomposites with pristine layered double hydroxides. Mater Chem Phys 130:890–896

    Article  Google Scholar 

  16. Mallakpour S, Madani M (2010) Transparent and thermally stable improved poly(vinyl alcohol)/cloisite Na+/ZnO hybrid nanocomposite films: fabrication, morphology and surface properties. Prog Org Coat 74:520–525

    Article  Google Scholar 

  17. Lo CF, Wu JF, Li HY, Hung WS, Shih CM, Hu CC, Liu YL, Lue SJ (2013) Novel poly vinyl alcohol nanocomposites containing carbon nano-tubes with Fe3O4 pendants for alkaline fuel cell applications. J Membr Sci 444:41–49

    Article  Google Scholar 

  18. Mallakpour S, Dinari M (2013) Enhancement in thermal properties of poly(vinyl alcohol) nanocomposites reinforced with Al2O3 nanoparticles. J Reinf Plast Compos 32:217–224

    Article  Google Scholar 

  19. Zhang J, Wang J, Lin T, Wang CH, Ghorbani K, Fang J, Wang X (2014) Magnetic and mechanical properties of polyvinyl alcohol (PVA) nanocomposites with hybrid nanofillers-graphene oxide tethered with magnetic Fe3O4 nanoparticles. Chem Eng J 237:462–468

    Article  Google Scholar 

  20. Karim MR, Yeum JH (2010) Poly(vinyl alcohol)-Fe3O4 nanocomposites prepared by the electrospinning technique. Soft Mater 8:197–206

    Article  Google Scholar 

  21. Turcu R, Nani A, Craciunescu I, Liebsher J, Pana O, Bica D, Vicas L, Migansoc C (2008) Comparative study of hybrid nanostructures of polymermagnetic nanoparticles. J Optoelectron Adv Mater 10:2237–2243

    Google Scholar 

  22. Ramesh S, Wen LC (2010) Investigation on the effects of addition of SiO2 nanoparticles on ionic conductivity, FTIR, and thermal properties of nanocomposite PMMA-LiCF3SO3-SiO2. Ionics 16:255–262

    Article  Google Scholar 

  23. Shariatinia Z, Nikfar Z (2013) Synthesis and antibacterial activities of novel nanocomposite films of chitosan/phosphoramide/Fe3O4 NPs. Int J Biol Macromol 60:226–234

    Article  Google Scholar 

  24. Patil PS, Pal RR, Salunkhe MM, Maldar NN, Wadgaonkar PP (2007) Synthesis of aromatic poly(amide-imide)s from novel diimide-diacid (DIDA) containing sulphone and bulky pendant groups by direct polycondensation with various diamines. Eur Polym J 43:5047–5054

    Article  Google Scholar 

  25. Hu Z, Li S, Zhang C (2007) Synthesis and Properties of polyamide-imides containing fluorenyl cardo structure. J Appl Polym Sci 106:2494–2501

    Article  Google Scholar 

  26. Jonquieres A, Dole C, Clement R, Lochone P (2000) Synthesis and characterization of new highly permeable polyamideimides from dianhydride monomers containing amide functions: an application to the purification of a fuel octane enhancer (ETBE) by pervaporation. J Polym Sci Part A 38:614–630

    Article  Google Scholar 

  27. Mallakpour S, Dinari M (2010) A study of the ionic liquid mediated microwave heating for the synthesis of new thermally stable and optically active aromatic polyamides under green procedure. Macromol Res 18:129–136

    Article  Google Scholar 

  28. Mallakpour S, Dinari M (2011) Progress in synthetic polymers based on natural amino acids. J Macromol Sci Part A Pure Appl Chem 48:644–679

    Article  Google Scholar 

  29. Mallakpour S, Dinari M (2011) Insertion of novel optically active poly(amide-imide) chains containing pyromellitoyl-bis-l-phenylalanine linkages into the nanolayered silicates modified with l-tyrosine through solution intercalation. Polymer 52:2514–2523

    Article  Google Scholar 

  30. Mallakpour S, Zarei M (2012) Novel chiral poly(amide-imide) nanocomposites reinforced with silicate layers and TiO2 nanoparticles based on N-trimellitylimido-l-isoleucine. J Reinf Plast Compos 32:574–582

    Article  Google Scholar 

  31. Mallakpour S, Dinari M (2013) Chiral bio-nanocomposites based on thermally stable poly(amide-imide) having phenylalanine linkages and reactive organoclay containing tyrosine amino acid. Amino Acids 44:1021–1029

    Article  Google Scholar 

  32. Mallakpour S, Khadem E (2014) A green route for the synthesis of novel optically active poly(amide-imide) nanocomposites containing N-trimellitylimido-l-phenylalanine segments and modified alumina nanoparticles. High Perform Polym 26:392–400

    Article  Google Scholar 

  33. Mallakpour S, Dinari M (2014) Novel bionanocomposites of poly(vinyl alcohol) and modified chiral layered double hydroxides: Synthesis, properties and a morphological study. Prog Org Coat 77:583–589

    Article  Google Scholar 

  34. Mallakpour S, Ayatollahi H, Sabzalian MR (2014) Study on biodegradability of poly(amide-imide)s containing N-trimellitylimido-l-amino acids and 3,5-diamino-N-(pyridin-3-yl)benzamide linkages. Polym Sci Ser B 56:464–470

    Article  Google Scholar 

  35. Kim SY, Ramaraj B, Yoon KR (2012) Preparation and characterization of polyvinyl alcohol-grafted Fe3O4 magnetic nanoparticles through glutar aldehyde. Surf Interface Anal 44:1238–1242

    Article  Google Scholar 

  36. Farooq R, Rehman F, Baig S, Sadique M, Khan S, Farooq U, Rehman A, Farooq A, Mukhtar-ul-Hassan AP, Shaukat SF (2009) The effect of ultrasonic irradiation on the anaerobic digestion of activated sludge. World Appl Sci J 6:234–237

    Google Scholar 

  37. Mallakpour S, Madani M (2012) A facile route for the preparation of novel optically active poly(amide-imide)/functionalized zinc oxide nanocomposites containing pyromellitoyl-bis-l-phenylalanine moieties. Polym Bull 68:1201–1214

    Article  Google Scholar 

  38. Yuanbi Z, Zumin Q, Jiaying H (2008) Preparation and analysis of Fe3O4 magnetic nanoparticles used as targeted-drug carriers. Chin J Chem Eng 16:451–455

    Article  Google Scholar 

  39. Kayal S, Ramanujan RV (2010) Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng C 30:484–490

    Article  Google Scholar 

  40. Van Krevelen D (1975) Some basic aspects of flame resistance of polymeric materials. Polymer 16:615–620

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the partial financial support from the Research Affairs Division at Isfahan University of Technology (IUT), Isfahan and National Elite Foundation (NEF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, S., Dinari, M. & Hatami, M. Dispersion of surface-modified nano-Fe3O4 with poly(vinyl alcohol) in chiral poly(amide-imide) bearing pyromellitoyl-bis-l-phenylalanine segments. J Mater Sci 50, 2759–2767 (2015). https://doi.org/10.1007/s10853-015-8831-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8831-5

Keywords

Navigation