Skip to main content
Log in

A study of the ionic liquid mediated microwave heating for the synthesis of new thermally stable and optically active aromatic polyamides under green procedure

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) of the 1,3-dialkylimidazolium-type have great potential for the innovative application of microwaves in synthesis and separation. The use of ILs as reagents in conjunction with microwave heating makes it possible to prepare new organsoluble optically active aromatic polyamides (PAs) by a direct polycondensation reaction of our synthesized dicarboxylic acid: (2S)-4-[(4-methyl-2-phthalimidylpentanoylamino)benzoylamino]- isophthalic acid (9), with several aromatic diamines. The polymerization reactions provided chiral PAs in high yield and inherent viscosities in the range of 0.43–0.85 dLg−1. The chemical structures of some of these samples as representatives were characterized by 1H NMR and elemental analysis. All polymers were characterized by FTIR and specific rotation tools. Their thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The efficiency of microwave irradiation conjugated with ILs was compared with that of the polycondensation of this monomer in ILs using conventional heating. The results showed that much shorter reaction times, higher yields and inherent viscosities were obtained under microwave assisted conditions. Furthermore, the use of ILs as a media and catalyst for the above polymerization reactions will eliminate the need of volatile and toxic solvents and reagents as condensing agents and provide a environmentally benign process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Wu, W. Li, B. Han, Z. Zhang, T. Jiang, and Z. Liu, Green Chem., 7, 701 (2005).

    Article  CAS  Google Scholar 

  2. T. Welton, Chem. Rev., 99, 2071 (1999).

    Article  CAS  Google Scholar 

  3. P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed., 39, 3772 (2000).

    Article  CAS  Google Scholar 

  4. J. S. Yadav, B. V. S. Reddy, and P. Sreedhar, Green Chem., 4, 436 (2002).

    Article  CAS  Google Scholar 

  5. H. O. Bourbigou and L. Magna, J. Mol. Catal. A: Chem., 182, 419 (2002).

    Article  Google Scholar 

  6. S. Baj, A. Chrobok, and S. Derfla, Green Chem., 8, 292 (2006).

    Article  CAS  Google Scholar 

  7. K. Ding, Z. Miao, Z. Liu, Z. Zhang, B. Han, G. An, S. Miao, and Y. Xie, J. Am. Chem. Soc., 129, 6362 (2007).

    Article  CAS  Google Scholar 

  8. S. W. Kang, K. Char, J. H. Kim, and Y. S. Kang, Macromol. Res., 15, 167 (2007).

    CAS  Google Scholar 

  9. C. Imrie, R. T. Elago, C. W. McCleland, and N. Williams, Green Chem., 4, 159 (2002).

    Article  CAS  Google Scholar 

  10. R. Sheldon, Chem. Commun., 2399 (2001).

  11. T. Fischer, A. Sethi, T. Welton, and J. Woolf, Tetrahedron Lett., 40, 793 (1999).

    Article  CAS  Google Scholar 

  12. V. L. Boulaire and R. Gree, Chem. Commun., 2195 (2000).

  13. L. Xu, W. Chen, J. Ross, and J. Xiao, Org. Lett., 3, 295 (2001).

    Article  CAS  Google Scholar 

  14. G. K. Arumugam, S. Khan, and P. A. Heiden, Macromol. Mater. Eng., 294, 45 (2009).

    Article  CAS  Google Scholar 

  15. S. Mallakpour and E. Kowsari, J. Polym. Sci. Part A: Polym. Chem., 43, 6545 (2005).

    Article  CAS  Google Scholar 

  16. S. Mallakpour and M. Kolahdoozan, Iranian Polym. J., 17, 53 (2008).

    Google Scholar 

  17. S. Mallakpour and Z. Rafiee, Eur. Polym. J., 43, 5017 (2007).

    Article  CAS  Google Scholar 

  18. L. Nothdurft, T. Gluck, W. Dempwolf, and G. Schmidt-Naake, Macromol. Mater. Eng., 293, 132 (2008).

    Article  CAS  Google Scholar 

  19. J. Westman. Org. Lett., 3, 3745 (2001).

    Article  CAS  Google Scholar 

  20. A. Pourjavadi, M. R. Zamanlu, and M. J. Zohuriaan-Mehra, Angew. Makromol. Chem., 269, 54 (1999).

    Article  CAS  Google Scholar 

  21. N. E. Leadbeater, H. M. Toreniusa, and H. Tye, Tetrahedron, 59, 2253 (2003).

    Article  CAS  Google Scholar 

  22. S. Jing, W. Peng, Z. Yingmin, and M. Xiaojuan, Macromol. Res., 14, 659 (2006).

    Google Scholar 

  23. K. Faghihi and M. Hagibeygi, Macromol. Res., 59, 2253 (2003).

    Google Scholar 

  24. E. V. Eycken, P. Appukkuttan, W. D. Borggraeve, W. Dehaen, D. Dallinger, and C. O. Kappe, J. Org. Chem., 67, 7904 (2002).

    Article  Google Scholar 

  25. S. Mallakpour and Z. Rafiee, Polymer, 48, 5530 (2007).

    Article  CAS  Google Scholar 

  26. A. Arfan and J. P. Bazureau, Org. Proc. Research. Develop., 9, 743 (2005).

    Article  CAS  Google Scholar 

  27. C. R. Brindaban and J. Ranjan, J. Org. Chem., 70, 8621 (2005).

    Article  Google Scholar 

  28. A. S. Vuka, V. Jovanovskia, A. Pollet-Villardb, I. Jermana, and B. Orel, Sol. Energy Mater. Sol. Cells, 92, 126 (2008).

    Article  Google Scholar 

  29. L. Liao, L. Liu, C. Zhang, and S. Gong, Macromol. Rapid Commun., 27, 2060 (2006).

    Article  CAS  Google Scholar 

  30. C. Guerrero-Sanchez, M. Lobert, R. Hoogenboom, and U. S. Schubert, Macromol. Rapid Commun., 28, 456 (2007).

    Article  CAS  Google Scholar 

  31. S. Mallakpour and M. Kolahdoozan, Eur. Polym. J., 43, 3344 (2007).

    Article  CAS  Google Scholar 

  32. F. Wiesbrock, R. Hoogenboom, and U.S. Schuber, Macromol. Rapid Commun., 25, 1739 (2004).

    Article  CAS  Google Scholar 

  33. S. H. Hsiao, C. W. Chen, and G. S. Liou, J. Polym. Sci. Part A: Polym. Chem., 42, 3302 (2004).

    Article  CAS  Google Scholar 

  34. S. H. Hsiao and Y. H. Chang, Eur. Polym. J., 40, 1749 (2004).

    Article  CAS  Google Scholar 

  35. S. Mallakpour and E. Kowsari, Iranian Polym. J., 15, 239 (2006).

    CAS  Google Scholar 

  36. E. Ferrero, J. F. Espeso, J. G. Dela Campa, J. De Abajo, and A. E. Lozano, J. Polym. Sci. Part A: Polym. Chem., 40, 3711 (2002).

    Article  CAS  Google Scholar 

  37. Y. L. Liu, S. H. Li, H. C. Lee, and K. Y. Hsu, React. Func. Polym., 66, 924 (2006).

    Article  CAS  Google Scholar 

  38. S. Mallakpour and Z. Rafiee, Iranian Polym. J., 17, 907 (2008).

    CAS  Google Scholar 

  39. S. Mallakpour and Z. Rafiee, Macromol. Res., 17, 901 (2009).

    CAS  Google Scholar 

  40. P. Kubisa, Prog. Polym. Sci., 29, 3 (2004).

    Article  CAS  Google Scholar 

  41. S. Mallakpour and S. Sepehri, J. Appl. Polym. Sci., 110, 2249 (2008).

    Article  Google Scholar 

  42. S. Mallakpour and S. Meratian, J. Appl. Polym. Sci., 111, 1209 (2009).

    Article  CAS  Google Scholar 

  43. D. W. Van Krevelen and P. J. Hoftyzer, Properties of polymers, 3rd Ed., Elsevier Scientific Publishing, 1976.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallakpour, S., Dinari, M. A study of the ionic liquid mediated microwave heating for the synthesis of new thermally stable and optically active aromatic polyamides under green procedure. Macromol. Res. 18, 129–136 (2010). https://doi.org/10.1007/s13233-009-0085-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-009-0085-0

Keywords

Navigation