Skip to main content
Log in

Measurement of surface tension and specific heat of Ni-18.8 at.% Si alloy melt by containerless processing

  • Abbaschian Festschrift
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The surface tension and specific heat of superheated and undercooled Ni-18.8 at.% Si alloy melt have been measured by the oscillating drop method and the drop calorimetry technique in combination with electromagnetic levitation, respectively. The surface tension follows a linear relationship with temperature within the range of 1370–2100 K. The surface tension at the melting temperature and the temperature coefficient are determined to be 1.796 N/m and −3.858 × 10−4 N/m/K, respectively. The specific heat is determined to be 40.80 ± 1.435 J/mol/K over the temperature range 1296–2000 K. The maximum undercooling of 178 K is achieved in the experiments. Based on the measured data of surface tension and specific heat, the viscosity, solute diffusion coefficient, density and thermal diffusivity of liquid Ni-18.8 at.% Si alloy are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Keene B (1988) Int Mater Rev 33:1

    CAS  Google Scholar 

  2. Keene B (1993) Int Mater Rev 38:157

    CAS  Google Scholar 

  3. Mills K, Su Y (2006) Int Mater Rev 51:329

    Article  CAS  Google Scholar 

  4. Egry I, Brillo J, Matsushita T (2005) Mater Sci Eng A 413–414:460

    Google Scholar 

  5. Egry I, Brillo J (2009) J Chem Eng Data 54:2347

    Article  CAS  Google Scholar 

  6. Chan WL, Averback RS, Cahill DG (2009) Phys Rev Lett 102:095701

    Article  Google Scholar 

  7. Plevachuk Y, Hoyer W, Kaban I, Kohler M, Novakovic R (2010) J Mater Sci 45:2051. doi:10.1007/s10853-009-4120-5

    Article  CAS  Google Scholar 

  8. Su YC, Mills K, Dinsdale A (2005) J Mater Sci 40:2185. doi:10.1007/s10853-005-1930-y

    Article  CAS  Google Scholar 

  9. Goicoechea J, Garcia-Cordovilla C, Louis E, Pamies A (1991) Scripta Metall Mater 25:479

    Article  CAS  Google Scholar 

  10. Li Z, Mills KC, McLean M, Mukai K (2005) Metall Mater Trans B 36:247

    Article  Google Scholar 

  11. Roe RJ, Bacchetta VL, Wong PMG (1967) J Phys Chem 71:4190

    Article  CAS  Google Scholar 

  12. Egry I, Lohoefer G, Jacobs G (1995) Phys Rev Lett 75:4043

    Article  CAS  Google Scholar 

  13. Przyborowski M, Hibiya T, Eguchi M, Egry I (1995) J Cryst Growth 151:60

    Article  CAS  Google Scholar 

  14. Wang HP, Yao WJ, Cao CD, Wei B (2004) Appl Phys Lett 85:3414

    Article  CAS  Google Scholar 

  15. Li JQ, Ishikawa T, Okada JT, Watanabe Y, Yu JD, Yoda S, Yuan ZF (2009) J Mater Res 24:2449

    Article  CAS  Google Scholar 

  16. Egry I, Holland-Moritz D, Novakovic R, Ricci E, Wunderlich R, Sobczak N (2010) Int J Thermophys 31:949

    Article  CAS  Google Scholar 

  17. Wang N, Han XJ, Wei B (2002) Appl Phys Lett 80:28

    Article  CAS  Google Scholar 

  18. Wang HP, Cao CD, Wei B (2004) Appl Phys Lett 84:4062

    Article  CAS  Google Scholar 

  19. Rayleigh L (1879) Proc R Soc Lond 29:71

    Article  Google Scholar 

  20. Cummings DL, Blackburn DA (1991) J Fluid Mech 224:395

    Article  Google Scholar 

  21. Fujii H, Matsumoto T, Nogi K (2000) Acta Mater 48:2933

    Article  CAS  Google Scholar 

  22. Wang HP, Chang J, Wei B (2009) J Appl Phys 106:033506

    Article  Google Scholar 

  23. Wang HP, Wei B (2005) Chin Sci Bull 50:945

    Article  CAS  Google Scholar 

  24. Vasiliu MI, Eremenko VN (1965) Poroshkovaya Metall 3:80

    Google Scholar 

  25. Shergin LM, Popel SI, Tsarevskii BV (1971) AN SSSR Ural’sk Nauchn Tsentr Trudy Inst Metall 25:52

    Google Scholar 

  26. Keene BJ (1987) Surf Interface Anal 10:367

    Article  CAS  Google Scholar 

  27. Egry I (1993) Scr Metall Mater 28:1273

    Article  CAS  Google Scholar 

  28. Schaefers K, Rosner-Kuhn M, Frohberg MG (1995) Mater Sci Eng A 197:83

    Article  Google Scholar 

  29. Smithlls CJ (1984) Metals reference book, 6th edn. Butterworth, London

    Google Scholar 

  30. Eötvös R, Wieldeman S (1886) Ann Phys 27:448

    Google Scholar 

  31. Iida T, Guthrie RIL (1993) The physical properties of liquid metals, vol 134. Oxford Science Publications, Claredon, Oxford

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 50871088), NPU-FFR, Fundamental Research Foundation of Shaanxi and the Foundation of Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongde Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, C., Zhang, L., Bai, X. et al. Measurement of surface tension and specific heat of Ni-18.8 at.% Si alloy melt by containerless processing. J Mater Sci 46, 6243–6247 (2011). https://doi.org/10.1007/s10853-011-5557-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5557-x

Keywords

Navigation