Skip to main content
Log in

Dual Block-Coordinate Forward-Backward Algorithm with Application to Deconvolution and Deinterlacing of Video Sequences

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Optimization methods play a central role in the solution of a wide array of problems encountered in various application fields, such as signal and image processing. Especially when the problems are highly dimensional, proximal methods have shown their efficiency through their capability to deal with composite, possibly nonsmooth objective functions. The cornerstone of these approaches is the proximity operator, which has become a quite popular tool in optimization. In this work, we propose new dual forward-backward formulations for computing the proximity operator of a sum of convex functions involving linear operators. The proposed algorithms are accelerated thanks to the introduction of a block-coordinate strategy combined with a preconditioning technique. Numerical simulations emphasize the good performance of our approach for the problem of jointly deconvoluting and deinterlacing video sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. It is sometimes said that A is full row rank.

References

  1. Abboud, F., Chouzenoux, E., Pesquet, J.C., Chenot, J.H., Laborelli, L.: A hybrid alternating proximal method for blind video restoration. In: 22nd IEEE 22nd European Signal Processing Conference (EUSIPCO 2014), pp. 1811–1815. Lisbon, Portugal (2014)

  2. Bauschke, H.H., Combettes, P.L.: A Dykstra-like algorithm for two monotone operators. Pac. J. Optim. 4(3), 383–391 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  4. Bolte, J., Nguyen, T.P., Peypouquet, J., Suter, B.: From error bounds to the complexity of first-order descent methods for convex functions. Tech. rep. (2015). http://www.optimization-online.org/DB_HTML/2015/10/5176.html

  5. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 8(1), 1–122 (2011)

    MATH  Google Scholar 

  7. Chambolle, A., Pock, T.: A remark on accelerated block coordinate descent for computing the proximity operators of a sum of convex functions. SMAI J. Comput. Math. 1, 29–54 (2015)

    Article  MathSciNet  Google Scholar 

  8. Chouzenoux, E., Pesquet, J.C., Repetti, A.: Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function. J. Optim. Theory App. 162(1), 107–132 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chouzenoux, E., Pesquet, J.C., Repetti, A.: A block coordinate variable metric forward-backward algorithm. J. Global Optim. 1–29 (2016)

  10. Combettes, P.L., Dũng, D., Vũ, B.C.: Proximity for sums of composite functions. J. Math. Anal. Appl. 380(2), 680–688 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Combettes, P.L., Dung, D., Vũ, B.C.: Dualization of signal recovery problems. Set-Valued Var. Anal. 18(3), 373–404 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer-Verlag, New York (2010)

    Google Scholar 

  13. Combettes, P.L., Pesquet, J.C.: Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping. SIAM J. Optim. 25(2), 1221–1248 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Combettes, P.L., Vũ, B.C.: Variable metric forward-backward splitting with applications to monotone inclusions in duality. Optimization 63(9), 1289–1318 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Condat, L.: Semi-local total variation for regularization of inverse problems. In: 22nd IEEE European Signal Processing Conference (EUSIPCO 2014), pp. 1806–1810. Lisbon, Portugal (2014)

  17. Csiba, D., Qu, Z., Richtárik, P.: Stochastic dual coordinate ascent with adaptive probabilities. In: 32nd International Conference on Machine Learning (ICML 2015), pp. 674–683. Lille, France (2015)

  18. Fu, X., He, B., Wang, X., Yuan, X.: Block wise alternating direction method of multipliers with gaussian back substitution for multiple block convex programming (2014). http://www.optimization-online.org/DB_FILE/2014/09/4544.pdf

  19. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  20. Jaggi, M., Smith, V., Takác, M., Terhorst, J., Krishnan, S., Hofmann, T., Jordan, M.I.: Communication-efficient distributed dual coordinate ascent. In: Advances in and Neural Information Processing Systems (NIPS 2014), pp. 3068–3076. Montréal, Canada (2014)

  21. Keller, S.H.: Video upscaling using variational methods. Ph.D. thesis, The Image Group, Department of Computer Science Faculty of Science, University of Copenhagen (2007)

  22. Keller, S.H., Lauze, F., Nielsen, M.: A total variation motion adaptive deinterlacing scheme. In: 5th International Conference Scale-Space 2005, pp. 408–418. Hofgeismar, Germany (2005)

  23. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: IEEE Conference Computer Vision Pattern Recognition (CVPR 2011), pp. 233–240. Colorado Springs, CO (2011)

  24. Liu, C., Freeman, W.T., Adelson, E.H., Weiss, Y.: Human-assisted motion annotation. In: IEEE Conference Computer Vision Pattern Recognition (CVPR 2008), pp. 1–8. Anchorage, Alaska (2008)

  25. Lojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. Editions du centre National de la Recherche Scientifique pp. 87–89 (1963)

  26. Lorenz, D.A., Wenger, S., Schöpfer, F., Magnor, M.A.: A sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing. In: IEEE International Conference on Image Processing (ICIP 2014), pp. 1347–1351. Paris, France (2014)

  27. Mallat, S.: Super resolution bandlet upconversion for HD tv. Tech. rep. (2006). http://www.di.ens.fr/~mallat/papiers/whitepaper.pdf

  28. Pesquet, J.C., Repetti, A.: A class of randomized primal-dual algorithms for distributed optimization. J. Nonlinear Convex Anal. 16(12), 2453–2490 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Qu, Z., Richtárik, P., Zhang, T.: Randomized dual coordinate ascent with arbitrary sampling. In: Advances in Neural Information Processing System (NIPS 2015), pp. 865–873. Montréal, Canada (2015)

  30. Richtárik, P., Takác, M.: Efficient serial and parallel coordinate descent methods for huge-scale truss topology design. In: International Conference on Operations Research (OR 2011), pp. 27–32 (2011)

  31. Saha, A., Tewari, A.: On the finite time convergence of cyclic coordinate descent methods. SIAM J. Optim. 23(1), 576–601 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Seshadrinathan, k, Bovik, A.C.: Motion tuned spatio-temporal quality assessment of natural videos. IEEE Trans. Image Process. 19(2), 335–350 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shalev-Shwartz, S., Zhang, T.: Stochastic dual coordinate ascent methods for regularized loss minimization. J. Mach. Learn. Res. 14(1), 567–599 (2013)

  34. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  35. Xu, Z., Gan, Z., Zhu, X.: Compressed video super-resolution reconstruction based on regularized algorithm. In: 6th IEEE International Conference Signal Processing (ICSP 2006). Beijing, China (2006)

  36. Zhang, X., Xiong, R., Ma, S., Gao, W.: A robust video super-resolution algorithm. In: 28th IEEE Picture Coding Symposium (PCS 2010), pp. 574–577. Nagoya, Japan (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feriel Abboud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abboud, F., Chouzenoux, E., Pesquet, JC. et al. Dual Block-Coordinate Forward-Backward Algorithm with Application to Deconvolution and Deinterlacing of Video Sequences. J Math Imaging Vis 59, 415–431 (2017). https://doi.org/10.1007/s10851-016-0696-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-016-0696-y

Keywords

Navigation