Skip to main content
Log in

Iterative Graph Cuts for Image Segmentation with a Nonlinear Statistical Shape Prior

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Shape-based regularization has proven to be a useful method for delineating objects within noisy images where one has prior knowledge of the shape of the targeted object. When a collection of possible shapes is available, the specification of a shape prior using kernel density estimation is a natural technique. Unfortunately, energy functionals arising from kernel density estimation are of a form that makes them impossible to directly minimize using efficient optimization algorithms such as graph cuts. Our main contribution is to show how one may recast the energy functional into a form that is minimizable iteratively and efficiently using graph cuts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://www.vision.caltech.edu/Image_Datasets/leaves/.

References

  1. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  2. Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary & region segmentation of objects in nd images. In: Proceedings. Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001, vol. 1, pp. 105–112. IEEE Press, New York (2001)

    Chapter  Google Scholar 

  3. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  4. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  5. Chang, J., Chou, T., Brennan, K.: Tracking monotonically advancing boundaries in image sequences using graph cuts and recursive kernel shape priors. IEEE Trans. Med. Imaging 13(5), 1008–1020 (2012)

    Article  Google Scholar 

  6. Cremers, D., Grady, L.: Statistical priors for efficient combinatorial optimization via graph cuts. In: Computer Vision–ECCV 2006, pp. 263–274 (2006)

    Chapter  Google Scholar 

  7. Cremers, D., Soatto, S.: A pseudo-distance for shape priors in level set segmentation. In: 2nd IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision, pp. 169–176 (2003). Citeseer

    Google Scholar 

  8. Cremers, D., Osher, S., Soatto, S.: Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int. J. Comput. Vis. 69(3), 335–351 (2006)

    Article  Google Scholar 

  9. Cremers, D., Schmidt, F., Barthel, F.: Shape priors in variational image segmentation: convexity, Lipschitz continuity and globally optimal solutions. In: IEEE Conference on Computer Vision and Pattern Recognition 2008. CVPR 2008, pp. 1–6. IEEE Press, New York (2008)

    Chapter  Google Scholar 

  10. Dambreville, S., Rathi, Y., Tannenbaum, A.: A framework for image segmentation using shape models and kernel space shape priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 1385–1399 (2008)

    Article  Google Scholar 

  11. Das, P., Veksler, O., Zavadsky, V., Boykov, Y.: Semiautomatic segmentation with compact shape prior. Image Vis. Comput. 27(1–2), 206–219 (2009)

    Article  Google Scholar 

  12. El Zehiry, N., Xu, S., Sahoo, P., Elmaghraby, A.: Graph cut optimization for the Mumford-Shah model. In: The Seventh IASTED International Conference on Visualization, Imaging and Image Processing, pp. 182–187. ACTA Press, Calgary (2007)

    Google Scholar 

  13. Freedman, D., Drineas, P.: Energy minimization via graph cuts: settling what is possible. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 2, pp. 939–946. IEEE Press, New York (2005)

    Google Scholar 

  14. Freedman, D., Zhang, T.: Interactive graph cut based segmentation with shape priors. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2005, vol. 1, pp. 755–762. IEEE Press, New York (2005)

    Google Scholar 

  15. Grady, L., Alvino, C.: The piecewise smooth Mumford–Shah functional on an arbitrary graph. IEEE Trans. Image Process. 18(11), 2547–2561 (2009)

    Article  MathSciNet  Google Scholar 

  16. Heimann, T., Meinzer, H.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)

    Article  Google Scholar 

  17. Hunter, D., Lange, K.: A tutorial on MM algorithms. Am. Stat. 58(1), 30–37 (2004)

    Article  MathSciNet  Google Scholar 

  18. Jiang, T., Tomasi, C.: Robust shape normalization based on implicit representations. In: 19th International Conference on Pattern Recognition, 2008. ICPR 2008, pp. 1–4. IEEE Press, New York (2008)

    Google Scholar 

  19. Kohli, P., Torr, P.H.: Dynamic graph cuts for efficient inference in Markov random fields. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2079–2088 (2007)

    Article  Google Scholar 

  20. Lee, S., Park, J.: Nonlinear shape normalization methods for the recognition of large-set handwritten characters. Pattern Recognit. 27(7), 895–902 (1994)

    Article  Google Scholar 

  21. Lempitsky, V., Blake, A., Rother, C.: Image segmentation by branch-and-mincut. In: Computer Vision–ECCV 2008, pp. 15–29 (2008)

    Chapter  Google Scholar 

  22. Lempitsky, V., Blake, A., Rother, C.: Branch-and-mincut: global optimization for image segmentation with high-level priors. J. Math. Imaging Vis. 44(3), 315–329 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Malcolm, J., Rathi, Y., Tannenbaum, A.: Graph cut segmentation with nonlinear shape priors. In: IEEE International Conference on Image Processing, 2007. ICIP 2007, vol. 4. IEEE Press, New York (2007)

    Google Scholar 

  24. Malcolm, J., Rathi, Y., Tannenbaum, A.: Multi-object tracking through clutter using graph cuts. In: IEEE 11th International Conference on Computer Vision, 2007. ICCV 2007, pp. 1–5. IEEE Press, New York (2007)

    Chapter  Google Scholar 

  25. O’Hagan, A., Forster, J., Kendall, M.: Bayesian Inference. Arnold, Sevenoaks (2004)

    MATH  Google Scholar 

  26. Pei, S.C., Lin, C.N.: Image normalization for pattern recognition. Image Vis. Comput. 13(10), 711–723 (1995)

    Article  Google Scholar 

  27. Schindelin, J.: Fiji is just ImageJ—batteries included. In: Proceedings of the ImageJ User and Developer Conference, Luxembourg (2008)

    Google Scholar 

  28. Silverman, B.: Density Estimation for Statistics and Data Analysis vol. 26. Chapman & Hall, London (1986)

    Book  MATH  Google Scholar 

  29. Slabaugh, G., Unal, G.: Graph cuts segmentation using an elliptical shape prior. In: IEEE International Conference on Image Processing. ICIP 2005, vol. 2. IEEE Press, New York (2005)

    Google Scholar 

  30. Tabbone, S., Wendling, L.: Binary shape normalization using the radon transform. In: Discrete Geometry for Computer Imagery, pp. 184–193. Springer, Berlin (2003)

    Chapter  Google Scholar 

  31. Veksler, O.: Star shape prior for graph-cut image segmentation. In: Computer Vision–ECCV 2008, pp. 454–467 (2008)

    Chapter  Google Scholar 

  32. Vineet, V., Narayanan, P.: Cuda cuts: fast graph cuts on the GPU. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW’08, pp. 1–8. IEEE Press, New York (2008)

    Google Scholar 

  33. Viola, P., Wells, W. III: Alignment by maximization of mutual information. Int. J. Comput. Vis. 24(2), 137–154 (1997)

    Article  Google Scholar 

  34. Vu, N., Manjunath, B.: Shape prior segmentation of multiple objects with graph cuts. In: IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008, pp. 1–8. IEEE Press, New York (2008)

    Chapter  Google Scholar 

  35. Zhu-Jacquot, J., Zabih, R.: Graph cuts segmentation with statistical shape priors for medical images. In: Third International IEEE Conference on Signal-Image Technologies and Internet-Based System, SITIS’07, pp. 631–635. IEEE Press, New York (2007)

    Chapter  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Agreement No. 0635561. J.C. and T.C. also acknowledge support from the National Science Foundation through grants DMS-1032131 and DMS-1021818, and from the Army Research Office through grant 58386MA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua C. Chang.

Appendices

Appendix A: Shape Alignment

In order to align the shape templates, we choose the affine transformation \(\mathbb{T}(\mathbf {s})=\alpha\mathbf{R}(\boldsymbol{\omega}) (\mathbf {s}-\mathbf {c})\) that minimizes the shape energy

In this expression, we have rewritten the contour integral on ∂Ω in terms of an integral over the zero-level set of ϕ Ω . Here, we develop a local Newton-Raphson algorithm for finding the optimal transform. Let us denote the 2⋅d column vector of transformation parameters φ=[α c ω]. We estimate φ using the iterative updates

$$\boldsymbol{\varphi}_{n+1} = \boldsymbol{\varphi}_n - \bigl[ \mathbf {H}_{\boldsymbol{\varphi}} (\boldsymbol{\varphi}_n ) \bigr]^{-1}\nabla_{\boldsymbol{\varphi}} U_{\textrm{shape}}(\boldsymbol{\varphi}_n) $$

where

$$\nabla_{\boldsymbol{\varphi}}E = \biggl[ \frac{\partial}{\partial\alpha}\quad \nabla_{\mathbf{c}}^\textrm{T} \quad \nabla_{\boldsymbol{\omega}}^\textrm {T} \biggr]^\textrm{T}U_{\textrm{shape}} $$

and

To populate the matrix, we need to calculate the gradients with respect to α, c, and ω. For λ>0, the first-order derivatives take the form

The sign function comes about from differentiation of the absolute value function in the distributional sense.

For λ≠1, the second-order derivatives constitute tensors that take the form

If λ=1, the first term is zero and the following term is added

The contour integrals in these expressions can be calculated using a regularized version of the Dirac delta function such as

$$\delta_\epsilon(x) = \frac{1}{\pi}\frac{\epsilon}{\epsilon^2+x^2} \quad \epsilon \to0^+. $$

Similarly, the characteristic function can be interpreted as the Heaviside function acting on the signed-distance shape embedding, which can be approximated using an approximation of the Heaviside function such as

$$H_\epsilon(x) = \frac{1}{2} + \frac{1}{\pi}\arctan \frac{x}{\epsilon} \quad\epsilon\to0^+. $$

The nonzero transformation derivatives are as follows

The results of this alignment method are shown in the third column Fig. 3. As an example, the raw input templates for the vans in this figure are shown in Fig. 5.

Fig. 5
figure 6

Inputted shape templates for a van. These templates are aligned using the method detailed in Appendix A in order to generate the aligned templates of Fig. 3

Appendix B: MM Algorithm for Iterative Graph Cuts

The shape term log∑w j K(Ω,Ω j ) can make minimization of the energy difficult, since its formulation involves a sum within a logarithm, making the energy functional nonlinear with respect to the labeling of pixels (into background and foreground) in the image.

To linearize the shape contribution, we will derive a surrogate function with separated terms. A function f(x|x k ), with fixed x k , is said to majorize a function g(x) at x k if the following holds [17]

(16)
(17)

We wish to perform iterative inference by finding a sequence of segmentations Ω (n+1)=argmin Ω Q(Ω|Ω (n)), where Q(Ω|Ω (n)) majorizes Eq. (7). By the descent property of the MM algorithm [17], this sequence converges to a local minimum.

For any convex function f(x), the following holds [17]

$$f \biggl(\sum_i \alpha_it_i \biggr)\leq\sum_i\alpha_i f(t_i). $$

Noting that −log(⋅) is convex, we have

(18)

verifying that the inequality condition (Eq. (16)) holds. In the case that Ω=Ω (n), we have

verifying that the equality condition (Eq. (17)) holds. So the two majorizing conditions (16), (17) are met, and we can minimize our original energy by iteratively minimizing

(19)

Because the distance function can be written as a sum over vertices and edges of a graph, so can Eq. (19). As a result, it is possible to minimize Eq. (19) within the graph cuts framework.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, J.C., Chou, T. Iterative Graph Cuts for Image Segmentation with a Nonlinear Statistical Shape Prior. J Math Imaging Vis 49, 87–97 (2014). https://doi.org/10.1007/s10851-013-0440-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0440-9

Keywords

Navigation