Skip to main content
Log in

An Inexact Alternating Directions Algorithm for Constrained Total Variation Regularized Compressive Sensing Problems

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Recently, the efficient solvers for compressive sensing (CS) problems with Total Variation (TV) regularization are needed, mainly because of the reconstruction of an image by a single pixel camera, or the recovery of a medical image from its partial Fourier samples. In this paper, we propose an alternating directions scheme algorithm for solving the TV regularized minimization problems with linear constraints. We minimize the corresponding augmented Lagrangian function alternatively at each step. Both of the resulting subproblems admit explicit solutions by applying a linear-time shrinkage. The algorithm is easily performed, in which, only two matrix-vector multiplications and two fast Fourier transforms are involved at per-iteration. The global convergence of the proposed algorithm follows directly in this literature. Numerical comparisons with the sate-of-the-art method TVLA3 illustrate that the proposed method is effective and promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afonso, M., Bioucas-Dias, J., Figueiredo, M.: An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Process. 20, 681–695 (2011)

    Article  MathSciNet  Google Scholar 

  2. Barzilai, J., Borwein, J.M.: Two point step size gradient method. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18, 2419–2434 (2009)

    Article  MathSciNet  Google Scholar 

  5. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  6. Bioucas-Dias, J., Figueiredo, M.: A new TwIst: Two-step iterative thresholding algorithm for image restoration. IEEE Trans. Image Precess. 16, 2992–3004 (2007)

    Article  MathSciNet  Google Scholar 

  7. Bregman, L.: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex optimization. U.S.S.R. Comput. Math. Math. Phys. 7, 200–217 (1967)

    Article  Google Scholar 

  8. Candès, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate information. Commun. Pure Appl. Math. 59, 1207–1233 (2005)

    Article  Google Scholar 

  9. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequence information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

    Article  MATH  Google Scholar 

  10. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. doi:10.1007/s10851-010-0251-1

  11. Chan, T.F., Chen, K.: An optimization-based multilevel algorithm for tatal variation image denoising. Multiscale Model. Simul. 5, 615–645 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chan, T.F., Mulet, P.: On the convergence of the lagged diffusivity fixed point method in total variation image restoration. SIAM J. Numer. Anal. 36, 354–367 (1999)

    Article  MathSciNet  Google Scholar 

  13. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear diffusivity fixed point method in total variation based image restoration. SIAM J. Sci. Comput. 20, 1964–1977 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  15. Donoho, D.: For most large undetermined systems of linear equations, the minimal 1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59, 907–934 (2006)

    Article  MathSciNet  Google Scholar 

  16. Duchi, J., Singer, Y.: Efficient online and batch learning using forward backword splitting. J. Mach. Learn. Res. 10, 2899–2934 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Esser, E.: Applications of Lagrangian-based alternating direction methods and connections to split Bregman. TR. 09-31, CAM, UCLA (2009). Available at ftp://ftp.math.ucla.edu/pub/camreport/cam09-31.pdf

  18. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3, 1015–1046 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Figueriedo, M., Nowak, R., Wright, S.J.: Gradient projection for sparse reconstruction, application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1, 586–598 (2007). Special Issue on Convex Optimization Methods for Signal Processing

    Article  Google Scholar 

  20. Friedlander, M., Van den Berg, E.: Probing the Pareto frontier for basis persuit solutions. SIAM J. Sci. Comput. 31, 890–912 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Comput. Appl. Math. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  22. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)

    MATH  Google Scholar 

  23. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and operator-splitting methods. In: Nonlinear Mechanics. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1989)

    Google Scholar 

  24. Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet nonlinéaires. Anal. Numér. 2, 41–76 (1975). Revue Francaise d’automatique, informatique, recherche opéretionnelle

    MathSciNet  Google Scholar 

  25. Goldstein, T., Osher, S.: The split Bregman method for 1-regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. He, B., Liao, L.Z., Han, D., Yang, H.: A new inexact alternating directions method for monotone variational inequalities. Math. Program. 92, 103–118 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Huang, Y., Ng, M., Wen, Y.W.: A fast total variation minimization method for image restoration. Multiscale Model. Simul. 7, 775–795 (2008)

    MathSciNet  Google Scholar 

  28. Krishnan, D., Lin, P., Tai, X.: An efficient operator splitting method for noise removal in images. Commun. Comput. Phys. 1, 847–858 (2006)

    Google Scholar 

  29. Li, C.: An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing. Master thesis, Rice University, USA (2009)

  30. Li, C.: Compressive sensing for 3D data processing tasks: applications, models and algorithms. Ph.D. thesis, Rice University, USA (2011)

  31. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58, 1182–1195 (2007)

    Article  Google Scholar 

  32. Lysaker, M., Tai, X.: Noise removal using smoothed normal and surface fitting. IEEE Trans. Image Process. 13, 1345–1357 (2004)

    Article  MathSciNet  Google Scholar 

  33. Ng, M., Plemmons, R.: Fast recursive least squares adaptive filtering by fast Fourier transform-based conjugate gradient iterations. SIAM J. Sci. Comput. 17, 920–941 (2006)

    Article  MathSciNet  Google Scholar 

  34. Ng, M., Qi, L., Yang, Y., Huang, Y.: On semismooth Newton’s methods for total variation minimization. J. Math. Imaging Vis. 27, 265–276 (2007)

    Article  MathSciNet  Google Scholar 

  35. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1998)

    Article  MathSciNet  Google Scholar 

  36. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  37. Setzer, S.: Splitting methods in image processing. Ph.D. thesis, University of Mannheim, Germany (2009)

  38. Setzer, S.: Operator splitting, Bregman methods and frame shrinkage in image processing. Int. J. Comput. Vis. 92, 265–280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas- Rachford splitting methods. J. Math. Imaging Vis. 36, 168–184 (2010)

    Article  MathSciNet  Google Scholar 

  40. Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17, 227–238 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1, 248–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wright, S., Nowak, R., Figueiredo, M.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57, 2479–2493 (2009)

    Article  MathSciNet  Google Scholar 

  43. Wen, Y.W., Ng, M., Ching, W.K.: Iterative algorithms based on decoupling of deblurring and denoising for image restoration. SIAM J. Sci. Comput. 30, 2655–2674 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xiao, Y., Yang, J., Yuan, X.: Fast algorithms for total variation image reconstruction from random projections. Available at arXiv:1001.1774v1

  45. Yang, J., Yin, W., Zhang, Y., Wang, Y.: A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J. Image Sci. 2, 569–592 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yang, J., Zhang, Y., Yin, W.: An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J. Sci. Comput. 31, 2842–2865 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yang, J., Zhang, Y., Yin, W.: A fast TVL1-L2 minimization algorithm for signal reconstruction from partial Fourier data. IEEE J. Sel. Top. Signal Process. 4, 288–297 (2010)

    Article  Google Scholar 

  48. Yu, G., Qi, L., Dai, Y.: On nonmonotone Chambolle gradient projection algorithms for total variation image restoration. J. Math. Imaging Vis. 35, 143–154 (2009)

    Article  MathSciNet  Google Scholar 

  49. Zhang, H., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14, 1043–1056 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Hai Xiao.

Additional information

This work is supported by Chinese NSF grant 11001075, and the Natural Science Foundation of Henan Province Eduction Department grant 2010B110004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, YH., Song, HN. An Inexact Alternating Directions Algorithm for Constrained Total Variation Regularized Compressive Sensing Problems. J Math Imaging Vis 44, 114–127 (2012). https://doi.org/10.1007/s10851-011-0314-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-011-0314-y

Keywords

Navigation