Skip to main content
Log in

Signal Reconstruction of Compressed Sensing Based on Alternating Direction Method of Multipliers

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The sparse signal reconstruction of compressive sensing can be accomplished by \({l_1}\)-norm minimization, but in many existing algorithms, there are the problems of low success probability and high computational complexity. To overcome these problems, an algorithm based on the alternating direction method of multipliers is proposed. First, using variable splitting techniques, an additional variable is introduced, which is tied to the original variable via an affine constraint. Then, the problem is transformed into a non-constrained optimization problem by means of the augmented Lagrangian multiplier method, where the multipliers can be obtained using the gradient ascent method according to dual optimization theory. The \({l_1}\)-norm minimization can finally be solved by cyclic iteration with concise form, where the solution of the original variable could be obtained by a projection operator, and the auxiliary variable could be solved by a soft threshold operator. Simulation results show that a higher signal reconstruction success probability is obtained when compared to existing methods, while a low computational cost is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.G. Baraniuk, Compressive Sensing [Lecture Notes]. IEEE Signal Process. Mag. 24(4), 118–121 (2007)

    Article  Google Scholar 

  2. A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  3. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  4. S. Boyd, L. Vandenberghe, Convex optimization (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  5. R.H. Byrd, M.E. Hribar, J. Nocedal, An interior point algorithm for large-scale nonlinear programming. SIAM J. Optim. 9(4), 877–900 (1999)

    Article  MathSciNet  Google Scholar 

  6. E.J. Candès, Compressive sampling, in Proceedings of the International Congress of Mathematicians, Madrid, Spain (2006)

  7. E.J. Candès, J.K. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  Google Scholar 

  8. E.J. Candès, T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  Google Scholar 

  9. P.L. Combettes, V.R. Wajs, Signal recovery by proximal forward–backward splitting. Multisc. Model. Simul. 4(4), 1168–1200 (2005)

    Article  MathSciNet  Google Scholar 

  10. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  11. D.L. Donoho, M. Elad, V.N. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52(1), 6–18 (2005)

    Article  MathSciNet  Google Scholar 

  12. D.L. Donoho, For most large underdetermined systems of linear equations the minimal \({l_1}\)-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(6), 797–829 (2006)

    Article  MathSciNet  Google Scholar 

  13. M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer, West Berlin, 2010)

    Book  Google Scholar 

  14. L. Feng, H. Sun, J. Zhu, Robust image compressive sensing based on half-quadratic function and weighted schatten-p norm. Inf. Sci. 2019(477), 265–280 (2019)

    Article  MathSciNet  Google Scholar 

  15. R. Gribonval, Piecewise linear source separation. Proc. SPIE 5207, 297–310 (2003)

    Article  Google Scholar 

  16. J.L. Lin, W.L. Hwang, S.C. Pei, Fast matching pursuit video coding by combining dictionary approximation and atom extraction. IEEE Trans. Circuits Syst. Video Technol. 17(12), 1679–1689 (2007)

    Article  Google Scholar 

  17. S.G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)

    Article  Google Scholar 

  18. D.M. Malioutov, M. Cetin, A.S. Willsky, Homotopy continuation for sparse signal representation. IEEE Int. Conf. Acoust. Speech Signal Process. 5, 733–736 (2005)

    MATH  Google Scholar 

  19. A.G. Nikitin, Y. Karadzhov, Matrix Superpotentials: Lie Theory and Its Applications in Physics (Springer, Japan, 2013), pp. 477–483

    Google Scholar 

  20. J.K. Pant, W.S. Lu, A. Antoniou, New Improved algorithms for compressive sensing based on\({l_p}\) norm. IEEE Trans. Circuits Syst. II Express Briefs 61(3), 198–202 (2014)

    Article  Google Scholar 

  21. D.S. Pham, S. Venkatesh, Efficient algorithms for robust recovery of images from compressed data. IEEE Trans. Image Process. 22(12), 4724–4737 (2013)

    Article  MathSciNet  Google Scholar 

  22. P. Stoica, Y. Selen, Cyclic minimizers majorization techniques, and the expectation-maximization algorithm: a refresher. IEEE Signal Process. Mag. 21(1), 112–114 (2005)

    Article  Google Scholar 

  23. J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  24. J.A. Tropp, A.C. Gilbert, M.J. Strauss, Simultaneous sparse approximation via greedy pursuit. IEEE Int. Conf. Acoust. Speech Signal Process. 5, 721–724 (2005)

    Google Scholar 

  25. F. Wen, P. Liu, Y. Liu, Robert C. Qiu, W. Yu, Robust sparse recovery in impulsive noise via \({l_p}\) -\( {l_1}\) optimization. IEEE Trans. Signal Process. 65(1), 105–118 (2017)

    Article  MathSciNet  Google Scholar 

  26. F. Wen, L. Pei, Y. Yang, W. Yu, P. Liu, Efficient and robust recovery of sparse signal and image using generalized nonconvex regularization. IEEE Trans. Comput. Imaging 99, 1–1 (2017)

    MathSciNet  Google Scholar 

  27. Y. Xiao, H. Zhu, S.Y. Wu, Primal and dual alternating direction algorithms for \({l_1}\) - \({l_1}\)-norm minimization problems in compressive sensing. Comput. Optim. Appl. 54(2), 441–459 (2013)

    Article  MathSciNet  Google Scholar 

  28. J. Xie, A. Liao, Y. Lei, A new accelerated alternating minimization method for analysis sparse recovery. Signal Process. 145, 167–174 (2018)

    Article  Google Scholar 

  29. Allen Y. Yang, Z. Zhou, A.G. Balasubramanian, S. Shankar Sastry, Y. Ma, Fast \({l_1}\)-minimization algorithms for robust face recognition. IEEE Trans. Image Process. 22(8), 3234–3246 (2013)

    Article  Google Scholar 

  30. J. Yang, Y. Zhang, Alternating direction algorithms for \({l_1}\)-problems in compressive sensing. SIAM J. Sci. Comput. 33(1), 250–278 (2011)

    Article  MathSciNet  Google Scholar 

  31. Z. Zhang, Y. Xu, J. Yang, X. Li, D. Zhang, A survey of sparse representation: algorithms and applications. IEEE Access 3, 490–530 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingwang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by Ph.D. Fund of Henan Polytechnic University with Grant Number B2012-100 and Open Fund of Network and Exchange Technology State Key Laboratory with Grant Number SKLNST-2016-1-02.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, X., Zhao, G. et al. Signal Reconstruction of Compressed Sensing Based on Alternating Direction Method of Multipliers. Circuits Syst Signal Process 39, 307–323 (2020). https://doi.org/10.1007/s00034-019-01174-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01174-2

Keywords

Navigation