Skip to main content
Log in

A 3D analytical modeling of tri-gate tunneling field-effect transistors

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, a three-dimensional (3D) analytical solution of the electrostatic potential is derived for the tri-gate tunneling field-effect transistors (TG TFETs) based on the perimeter-weighted-sum approach. The model is derived by separating the device into a symmetric and an asymmetric double-gate (DG) TFETs and then solving the 2D Poisson’s equation for these structures. The subthreshold tunneling current expression is extracted by numerical integrating the band-to-band tunneling generation rate over the volume of the device. It is shown that the potential distributions, the electric field profile, and the tunneling current predicted by the analytical model are in close agreement with the 3D device simulation results without the need of fitting parameters. Additionally, the dependence of the tunneling current on the device parameters in terms of the gate oxide thickness, gate dielectric constant, channel length, and applied drain bias is investigated and also demonstrated its agreement with the device simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vallett, A., Minassian, S., Kaszuba, P., Datta, S., Redwing, J.M., Mayer, T.S.: Fabrication and characterization of axially doped silicon nanowire tunnel field-effect transistors. Nano Lett 10(10), 4813–4818 (2010)

    Article  Google Scholar 

  2. Ionescu, A.M., Riel, H.: Fabrication and characterization of axially doped silicon nanowire tunnel field-effect transistors. Nature 479, 329–337 (2011)

    Article  Google Scholar 

  3. Guo, P., Yang, Y., Cheng, Y., Han, G., Pan, J., Zhang, Z., Hu, H., Shen, Z.X., Chia, C.K., Yeo, Y.C.: Tunneling field-effect transistor with Ge\(/{\rm {In}}_{0.53} {\rm {Ga}}_{0.47}\) As heterostructure as tunneling junction. J Appl Phys 113, 094502-1–094502-9 (2013)

    Google Scholar 

  4. Zhu, Y., Jain, N., Mohata, D.K., Datta, S., Lubyshev, D., Fastenau, J.M., Liu, A.K., Hudait, M.K.: Band offset determination of mixed As/Sb type-II staggered gap heterostructure for n-channel tunnel field effect transistor application. J Appl Phys 113, 024319-1–024319-1-5 (2013)

    Google Scholar 

  5. Gholizadeh, M., Hosseini, S.E.: A 2-D analytical model for double-gate tunnel FETs. IEEE Trans Electron Devices 61(5), 1494–1500 (2014)

    Article  Google Scholar 

  6. Pandey, P., Vishnoi, R., Kumar, M.J.: A full-range dual material gate tunnel field effect transistor drain current model considering both source and drain depletion region band-to-band tunneling. J Comput Electron 14(1), 280–287 (2015)

    Article  Google Scholar 

  7. Marjani, S., Hosseini, S.E.: Radio-frequency small-signal model of hetero-gate-dielectric p-n-p-n tunneling field-effect transistor including the charge conservation capacitance and substrate parameters. J Appl Phys 118(9), 095708-1–095708-8 (2015)

    Article  Google Scholar 

  8. Trivedi, A.R., Ahmed, K.Z., Mukhopadhyay, S.: Negative gate transconductance in gate/source overlapped heterojunction tunnel FET and application to single transistor phase encoder. IEEE Electron Device Lett 36(2), 201–203 (2015)

    Article  Google Scholar 

  9. Luisier, M., Klimeck, G.: Simulation of nanowire tunneling transistors: from the Wentzel-Kramers-Brillouin approximation to full-band phonon-assisted tunneling. J Appl Phys 107(9), 084507-1–084507-6 (2010)

    Google Scholar 

  10. Britnell, L., Gorbachev, R.V., Jalil, R., Belle, B.D., Schedin, F., Mishchenko, A., Georgiou, T., Katsnelson, M.I., Eaves, L., Morozov, S.V., Peres, N.M.R., Leist, J., Geim, A.K., Novoselov, K.S., Ponomarenko, L.A.: Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335(6071), 947–950 (2012)

    Article  Google Scholar 

  11. Ganapathi, K., Yoon, Y., Salahuddin, S.: Analysis of InAs vertical and lateral band-to-band tunneling transistors: leveraging vertical tunneling for improved performance. Appl Phys Lett 97(3), 033504-1–033504-3 (2010)

    Article  Google Scholar 

  12. Jain, P., Prabhat, V., Ghosh, B.: Dual metal-double gate tunnel field effect transistor with mono/hetero dielectric gate material. J Comput Electron 14(2), 537–542 (2015)

    Article  Google Scholar 

  13. Bashir, F., Loan, S.A., Rafat, M., Alamoud, A.R.M., Abbasi, S.A.: A high performance gate engineered charge plasma based tunnel field effect transistor. J Comput Electron 14(2), 477–485 (2015)

    Article  Google Scholar 

  14. Revelant, A., Villalon, A., Wu, Y., Zaslavsky, A., Royer, C.L., Iwai, H., Cristoloveanu, S.: Electron-hole bilayer TFET: experiments and comments. IEEE Trans Electron Devices 61(8), 2674–2681 (2014)

    Article  Google Scholar 

  15. Yang, Y., Guo, P., Han, G., Low, K.L., Zhan, C., Yeo, Y.C.: Simulation of tunneling field-effect transistors with extended source structures. J Appl Phys 111(11), 114514-1–114514-8 (2012)

    Google Scholar 

  16. Marjani, S., Hosseini, S.E.: Radio-frequency modeling of square-shaped extended source tunneling field-effect transistors. Superlattices Microstruct 76, 297–314 (2014)

    Article  Google Scholar 

  17. Beneventi, G.B., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Optimization of a pocketed dual-metal-gate TFET by means of TCAD simulations accounting for quantization-induced bandgap widening. IEEE Trans Electron Devices 62(1), 44–51 (2015)

    Article  Google Scholar 

  18. Chang, H.Y., Adams, B., Chien, P.Y., Li, J., Woo, J.C.S.: Improved subthreshold and output characteristics of source-pocket Si tunnel FET by the application of laser annealing. IEEE Trans Electron Devices 60(1), 92–96 (2013)

    Article  Google Scholar 

  19. Hosseini, S.E., Kamali Moghaddam, M.: Analytical modeling of a p-n-i-n tunneling field effect transistor. Mater Sci Semicond Process 30, 56–61 (2015)

    Article  Google Scholar 

  20. Bohr, M., Mistry, K.: Intel website. 2011. http://www.intel.com/content/www/us/en/silicon-innovations/revolutionary-22nm-transistor-technology-presentation.html?wapkw=tri-gate+transistors

  21. Son, A., Kim, J., Jeong, N., Choi, J., Shin, H.: Improved explicit current-voltage model for long-channel undoped surrounding-gate metal oxide semiconductor field effect transistor. Jpn J Appl Phys 48, 04C035-1–04C035-4 (2009)

    Google Scholar 

  22. Colinge, J.P.: FinFETs and other multi-gate MOSFETs. Jpn J Appl Phys 48, 04C035-1 (2009)

    Article  Google Scholar 

  23. Hisamoto, D., Lee, W.C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., Anderson, E., King, T.J., Bokor, J., Chenming, H.: FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans Electron Devices 47(12), 2320–2325 (2000)

    Article  Google Scholar 

  24. Auth, C., Allen, C., Blattner, A., Bergstrom, D., Brazier, M., Bost, M., Buehler, M., Chikarmane, V., Ghani, T., Glassman, T., Grover, R., Han, W., Hanken, D., Hattendorf, M., Hentges, P., Heussner, R., Hicks, J., Ingerly, D., Jain, P., Jaloviar, S., James, R., Jones, D., Jopling, J., Joshi, S., Kenyon, C., Liu, H., McFadden, R., McIntyre, B., Neirynck, J., Parker, C., Pipes, L., Post, I., Pradhan, S., Prince, M., Ramey, Stephen, Reynolds, T., Roesler, J., Sandford, J., Seiple, J., Smith, P., Thomas, C., Towner, D., Troeger, T., Weber, C., Yashar, P., Zawadzki, K., Mistry, K.: A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. In: VLSI Technology (VLSIT), pp. 131–132 (2012). doi:10.1109/VLSIT.2012.6242496

  25. Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S.K., Colombo, L.: Electronics based on two-dimensional materials. Nat Nanotech 9, 768–779 (2014)

    Article  Google Scholar 

  26. Leonelli, D., Vandooren, A., Rooyackers, R., Verhulst, A.S., De Gendt, S., Heyns, M.M., Groeseneken, G.: Performance enhancement in multi gate tunneling field effect transistors by scaling the fin-width. Jpn J Appl Phys 49, 04DC10-1–04DC10-5 (2010)

    Article  Google Scholar 

  27. Le, S.T., Jannaty, P., Luo, X., Zaslavsky, A., Perea, D.E., Dayeh, S.A., Picraux, S.T.: Axial SiGe heteronanowire tunneling field-effect transistors. Nano Lett 12(11), 5850–5855 (2012)

    Article  Google Scholar 

  28. Liu, L., Liang, R., Zhao, L., Wang, J., Xu, J.: Influence of corner effect on performance of three-dimensional tunnel field-effect transistor. Jpn J Appl Phys 53(6), 064304-1–064304-6 (2014)

    Google Scholar 

  29. Zhao, Q.T., Richter, S., Schulte-Braucks, C., Knoll, L., Blaeser, S., Luong, G.V., Trellenkamp, S., Schafer, A., Tiedemann, A., Hartmann, J.M., Bourdelle, K., Mantl, S.: Strained Si and SiGe nanowire tunnel FETs for logic and analog applications. IEEE J Electron Devices Soc 3(3), 103–114 (2015)

    Article  Google Scholar 

  30. ATLAS: Device simulation software. Silvaco Int, Santa Clara (2012)

    Google Scholar 

  31. Tura, A., Zhang, Z., Liu, P., Xie, Y.H., Woo, J.C.S.: Vertical silicon p-n-p-n tunnel nMOSFET with MBE-grown tunneling junction. IEEE Trans Electron Devices 58(7), 1907–1913 (2011)

    Article  Google Scholar 

  32. Auth, C.P., Plummer, J.D.: Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET’s. IEEE Electron Device Lett 18(2), 74–76 (1997)

    Article  Google Scholar 

  33. Auth, C.P., Plummer, J.D.: A simple model for threshold voltage of surrounding-gate MOSFETs. IEEE Trans Electron Devices 45(11), 2381–2383 (1998)

    Article  Google Scholar 

  34. Tsormpatzoglou, A., Dimitriadis, C.A., Clerc, R., Pananakakis, G., Ghibaudo, G.: Semianalytical modeling of short-channel effects in lightly doped silicon trigate MOSFETs. IEEE Trans Electron Devices 55(10), 2623–2631 (2008)

    Article  Google Scholar 

  35. Te-Kuang, C.: A compact model for threshold voltage of surrounding-gate MOSFETs with localized interface trapped charges. IEEE Trans Electron Devices 58(2), 567–571 (2011)

    Article  Google Scholar 

  36. Omura, Y., Horiguchi, S., Tabe, M., Kishi, K.: Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs. IEEE Trans Electron Devices 14(12), 569–571 (1993)

    Article  Google Scholar 

  37. Balestra, F., Ghibaudo, G.: Device and circuit cryogenic operation for low temperature electronics. Springer Science, Berlin (2001)

    Book  Google Scholar 

  38. Ismail, R., Ahmadi, M.T., Anwar, S.: Advanced nanoelectronics. CRC Press/Taylor and Francis Group, Boca Raton (2012)

    Google Scholar 

  39. Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans Electron Devices 60(10), 3285–3290 (2013)

    Article  Google Scholar 

  40. Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-k gate dielectric. IEEE Trans Electron Devices 54(7), 1725–1733 (2007)

    Article  Google Scholar 

  41. Saurabh, S., Kumar, M.J.: Estimation and compensation of process induced variations in nanoscale tunnel field effect transistors (TFETs) for improved reliability. IEEE Trans Device Mater Rel 10(9), 390–395 (2010)

    Article  Google Scholar 

  42. Saurabh, S., Kumar, M.J.: Investigation of the novel attributes of a dual material gate nanoscale tunnel field effect transistor. IEEE Trans Electron Devices 58(2), 404–410 (2011)

    Article  Google Scholar 

  43. Abdi, D.B., Kumar, M.J.: Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain. IEEE J Electron Devices Soc 2(6), 187–190 (2014)

    Article  Google Scholar 

  44. Ram, M.S., Abdi, D.B.: Single grain boundary dopingless PNPN tunnel FET on recrystallized polysilicon: proposal and theoretical analysis. IEEE J Electron Devices Soc 3(3), 291–296 (2015)

    Article  Google Scholar 

  45. Vishnoi, R., Kumar, M.J.: An accurate compact analytical model for the drain current of a TFET from subthreshold to strong Inversion. IEEE Trans Electron Devices 62(2), 478–484 (2015)

    Article  Google Scholar 

  46. Tsormpatzoglou, A., Dimitriadis, C.A., Clerc, R., Rafhay, Q., Pananakakis, G., Ghibaudo, G.: Semi-analytical modeling of short-channel effects in Si and Ge symmetrical double-gate MOSFETs. IEEE Trans Electron Devices 54(8), 1943–1952 (2007)

    Article  Google Scholar 

  47. Kane, E.O.: Zener tunneling in semiconductors. J Phys Chem Solids 12(2), 181–188 (1960)

    Article  MathSciNet  Google Scholar 

  48. Verhulst, A.S., Soree, B., Leonelli, D., Vandenberghe, W.G., Groeseneken, G.: Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor. J Appl Phys 107, 024518-1–024518-8 (2010)

  49. Cho, S., Lee, J.S., Kim, K.R., Park, B.-G., Harris Jr., J.S., Kang, I.M.: Analyses on small-signal parameters and radio-frequency modeling of gate-all-around tunneling field-effect transistors. IEEE Trans Electron Devices 58(12), 4164–4171 (2011)

    Article  Google Scholar 

  50. Verhulst, A.S., Leonelli, D., Rooyackers, R., Groeseneken, G.: Drain voltage dependent analytical model of tunnel field-effect transistors. J Appl Phys 110, 024510-1–024510-10 (2011)

    Article  Google Scholar 

  51. Liu, L., Mohata, D., Datta, S.: Scaling length theory of double-gate interband tunnel field-effect transistors. IEEE Trans Electron Devices 59(4), 902–908 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ebrahim Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marjani, S., Hosseini, S.E. & Faez, R. A 3D analytical modeling of tri-gate tunneling field-effect transistors. J Comput Electron 15, 820–830 (2016). https://doi.org/10.1007/s10825-016-0843-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0843-0

Keywords

Navigation