Skip to main content
Log in

A high performance gate engineered charge plasma based tunnel field effect transistor

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, we propose a new gate engineered dopingless tunnel field effect transistor (GEDL-TFET). GEDL-TFET has double gate and uses metals of different work functions to realize source and drain regions in undoped silicon; a charge plasma concept. The novelty of the device is the use of dual material top gate and thus two gates appear at the top, main gate 1 and a tunneling gate (TG). The use of TG has enhanced the performance of the device significantly and it acts as a performance booster. The simulation study has shown that the \(\hbox {I}_{\mathrm{ON}}\) and \(\hbox {I}_{\mathrm{ON}}/\hbox {I}_{\mathrm{OFF}}\) ratio in the proposed GEDL-TFET device have increased by \(\sim \)53 times and \(\sim \)68 times in comparison to a double gate doped TFET (D-TFET) and a double gate dopingless TFET (DL-TFET) devices respectively. Further, a significant improvement in average subthreshold slope of \(\sim \)57% has been achieved in the proposed GEDL-TFET device in comparison to the other two devices. Besides, the cutoff frequency \((f_{\mathrm{T}})\) of GEDL-TFET (90.77 GHZ) has increased by \(\sim \)12 times in comparison to D-FET (\(\sim \)7.77 GHZ) and DL-TFET (\(\sim \)7.77 GHZ) devices respectively. The transient analyses have shown that a reduction of 47 and 44.11 % in switching ON-delay and 21.1 and 16.23 % in switching OFF delay is obtained in the GEDL-TFET device based inverting amplifier in comparison to DL-TFET and D-TFET based inverters amplifiers respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Dennard, R.H., Gaensslen, F.H., Yu, H.-N., Rideout, V.L., Bassous, E., Leblanc, A.R.: Design of ion-implanted MOSFETs with very small physical dimensions. IEEE J. Solid-State Circuits SSC-9(5), 256–268 (1974)

  2. Baccarani, G., Wordeman, M.R., Dennard, R.: Generalized scaling theory and its application to a 1/4 micrometer MOSFET design. IEEE Trans. Electron Devices ED-31(4), 452–462 (1984)

  3. Ellinger, F., Claus, M., Schroeter, M., Carta, C.: Review of advanced and beyond CMOS FET technologies for radio frequency circuit design. In: Proceedings of SBMO/IEEE MTT-S IMOC, pp. 347–351 (2011)

  4. Skotnicki, T.: Heading for decananometer CMOS—Is navigation among icebergs still a viable strategy. In: Proceedings of ESSDERC, Gif-sur-Yvette pp. 19–33 (2000)

  5. Loan, S.A., Qureshi, S., Iyer, S.S.K.: A novel partial ground plane based MOSFET on selective buried oxide: 2D simulation study. IEEE Trans. Electron Devices 57, 671–680 (2010)

    Article  Google Scholar 

  6. Nagavarapu, V., Jhaveri, R.: Woo, Jason C.S.: The tunnel source (PNPN) n-MOSFET: a novel high performance transistor. IEEE Trans. Electron Devices 4(55), 1013–1019 (2008)

    Article  Google Scholar 

  7. Ionescu, A.M., Riel, H.: Tunnel field effect transistors as energy efficient electronic switches. Nature 479, 329–337 (2011)

    Article  Google Scholar 

  8. Kim, D., et al.: Heterojunction tunneling transistor (HETT)-based extremely low power applications. Proceedings of IEEE/ACM design international symposium on low power electron, New York, pp. 219–224 (2009)

  9. Hisamoto, D., Lee, W.-C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., Anderson, E., King, T.-J., Bokor, J., Hu, C.: FinFET—a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Devices 47(12), 2320–2325 (2000)

    Article  Google Scholar 

  10. Kimura, S., Noda, H., Hisamoto, D., Takeda, E.: A 0.1 \(\mu \)m-gate elevated source and drain MOSFET fabricated by phase-shifted lithography. In: IEDM technical digest, pp. 950–952 (1991)

  11. Mizuno, T., et al.: High velocity electron injection MOSFETs for ballistic transistors using SiGe/strained-Si heterojunction source structures. In: VLSI symposium technology digest, pp. 202–203 (2004)

  12. Nayak, D.K., Woo, J.C.S., Park, J.S., Wang, K., McWilliams, K.P.: Enhancement-mode quantum-well Ge\(x\)SiGe1-\(x\) PMOS. IEEE Electron Device Lett. 12(4), 154–156 (1991)

    Article  Google Scholar 

  13. Kim, Y., et al.: Conventional n-channel MOSFET devices using single layer HfO\(_2\) and ZrO\(_2 as\) high \(k\) gate dielectrics with polysilicon gate electrode. In: IEDM technical digest, pp. 20.2.1-20.2.4 (2001)

  14. Gopalakrishnan, K., Griffin, P.B., Plummer, J. D.: I-MOS: a novel semiconductor device with subthreshold slope lower than \(kT/q\). In: Technical digest—IEEE international electron devices meet, pp. 289–292 (2002)

  15. Salahuddin, S., Datta, S.: Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008)

    Article  Google Scholar 

  16. Nathanson, H., Newell, W., Wickstro, R., Davis, J.: Resonant gate transistor. IEEE Trans. Electron Devices ED-14(3), 117–133 (1967)

  17. Rusu, A., Salvatore, G. A., Jimenez, D., Ionescu, A. M.: Metal-ferroelectric-metal-oxide-semiconductor field effect transistor with sub-60mV/decade subthreshold swing and internal voltage amplification. In: IEEE international electron devices meeting, pp. 16.3.1-16.3.4 (2010)

  18. Abele, N., et al.: Suspended-gate MOSFET: bringing new MEMS functionality into solid-state MOS transistor. Technical digest IEEE international electron devices meeting, pp. 479–481 (2005)

  19. Chen, F., et al.: Integrated circuit design with NEM relays. In: IEEE/ACM international conference on computer-aided design, San Jose, pp. 750–757 (2008)

  20. Quinn, J., Kawamoto, G., McCombe, B.: Subband spectroscopy by surface channel tunneling. Surf. Sci. 73, 190–196 (1978)

    Article  Google Scholar 

  21. Banerjee, S., Richardson, W., Coleman, J., Chatterjee, A.: A new three-terminal tunnel device. IEEE Electron Device Lett. 8, 347–349 (1987)

    Article  Google Scholar 

  22. Takeda, E., Matsuoka, H., Igura, Y., Asai, S.: A band to band tunneling MOS device B2T-MOSFET. In: Technical digest–international electron devices meeting, pp. 402–405 (1988)

  23. Baba, T.: Proposal for surface tunnel transistors. Jpn. J. Appl. Phys. 31, L455–L457 (1992)

    Article  Google Scholar 

  24. Seabaugh, A.C., Zhang, Q.: Low voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010)

    Article  Google Scholar 

  25. Chiang, M.-H., Lin, J.-N., Kim, K., Chuang, C.-T.: Random dopant fluctuation in limited-width FinFET technologies. IEEE Trans. Electron Devices 54(8), 2055–2060 (2007)

    Article  Google Scholar 

  26. Damrongplasit, N., Shin, C., Kim, S.H., Vega, R.A., Liu, T.J.K.: Study of random dopant fluctuation effects in germanium-source tunnel FETs. IEEE Trans. Electron Devices 58(10), 3541–3548 (2011)

    Article  Google Scholar 

  27. Damrongplasit, N., Kim, S.H., Liu, T.J.K.: Study of random dopant fluctuation induced variability in the raised-ge-source TFET. IEEE Electron Device Lett. 34(2), 184–186 (2013)

    Article  Google Scholar 

  28. Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)

    Article  Google Scholar 

  29. Rajasekharan, B., Hueting, R.J.E., Salm, C., et al.: Fabrication and characterization of the charge-plasma diode. IEEE Electron Device Lett. 31(6), 528–530 (2010)

    Article  Google Scholar 

  30. Hueting, R.J.E., Rajasekharan, B., Salm, C., et al.: Charge plasma P-N diode. IEEE Electron Device Lett. 29(12), 1367–1368 (2008)

    Article  Google Scholar 

  31. Kumar, M.J., Nadda, K.: Bipolar charge-plasma transistor: a novel three terminal device. IEEE Trans. Electron Devices 59(4), 962–967 (2012)

    Article  Google Scholar 

  32. Loan, S.A., Bashir, F., Rafat, M., Alamoud, A.R., Abbasi, S.A.: A high performance charge plasma based lateral bipolar transistor on selective buried oxide. Semicond. Sci. Technol. 29, 015011 (2014)

    Article  Google Scholar 

  33. Loan, S.A., Bashir, F., Rafat, M., Alamoud, A.R., Abbasi, S.A.: A high performance charge plasma PN-Schottky collector transistor on silicon-on-insulator. Semicond. Sci. Technol. 29, 095001 (2014)

    Article  Google Scholar 

  34. Boucart, K., Ionescu, A.M.: Double gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)

    Article  Google Scholar 

  35. Saurabh, S., Kumar, M.J.: Investigation of the novel attributes of a dual material gate nanoscale tunnel field effect transistor. IEEE Trans. Electron Devices 58(2), 404–410 (2011)

    Article  Google Scholar 

  36. Washio, K., et al.: A 0.2 m 180 GHz f 6.7 ps ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high speed digital applications. IEEE Trans. Electron Devices 49, 271–278 (2002)

    Article  Google Scholar 

  37. ATLAS Device Simulation Software: Silvaco Int., Santa Clara (2012)

  38. Solomon, Paul M., et al.: Universal tunneling behavior in technologically relevant P/N junction diodes. J. Appl. Phys. 95(10), 5800–5812 (2004)

  39. Mallik, A., Chattopadhyay, A.: Impact of a spacer-drain overlap on the characteristics of a silicon tunnel field-effect transistor based on vertical tunneling. IEEE Trans. Electron Devices 60, 935–943 (2013)

    Article  Google Scholar 

  40. Asra, R., Murali, K.V.R.M.: Rao, VRamgopal: A binary tunnel field effect transistor with a steep sub-threshold swing and increased ON current. Jpn. J. Appl. Phys. 49, 120203 (2010)

    Article  Google Scholar 

  41. Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: On enhanced Miller capacitance effect in interband tunnel transistors. IEEE Electron Device Lett. 30(10), 1102–1104 (2009)

    Article  Google Scholar 

  42. Knoch, J., Appenzeller, J.: A novel concept for fi eld-effect transistors—the tunneling carbon nanotube FET. In: Proceedings of 63rd DRC 1, 153–156 (2005)

  43. Guillaumot, B., Garros, X., Lime, F., Oshima, K., Tavel, B., Chrob-oczek, J.A., Masson, P., Truche, R., Papon, A.M., Martin, F., Dam-lencourt, J.F., Maitrejean, S., Rivoire, M., Leroux, C., Cristoloveanu, S., Ghibaudo, G., Autran, J.L., Skotnicki, T., Deleonibus, S.: 75 nm damascene metal gate and high-k integration for advanced CMOS devices. In: IEDM technical digest, pp. 355–358 (2002)

  44. Wang, H., Chang, S., Hu, Y., He, H., He, J., Huang, Q., He, F., Wang, G.: A novel barrier controlled tunnel FET. IEEE Electron Device Lett. 35, 798 (2014)

    Article  Google Scholar 

  45. Zhuge, J., Anne, S.: Digital-circuit analysis of short-gate tunnel FETs for low-voltage applications. Semicond. Sci. Technol. 26, 085001 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSTIP strategic technologies programs, number (11_NAN-2118-02) in the Kingdom of Saudi Arabia”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad A. Loan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, F., Loan, S.A., Rafat, M. et al. A high performance gate engineered charge plasma based tunnel field effect transistor. J Comput Electron 14, 477–485 (2015). https://doi.org/10.1007/s10825-015-0665-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0665-5

Keywords

Navigation