Skip to main content

Advertisement

Log in

Electric double-layer transistors: a review of recent progress

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With the miniaturization of electronic devices, it is essential to achieve higher carrier density and lower operation voltage in field-effect transistors (FETs). However, this is a great challenge in conventional FETs owing to the low capacitance and electric breakdown of gate dielectrics. Recently, electric double-layer technology with ultra-high charge-carrier accumulation at the semiconductor channel/electrolyte interface has been creatively introduced into transistors to overcome this problem. Some interesting electrical transport characteristics such as superconductivity, metal–insulator transition, and tunable thermoelectric behavior have been modulated both theoretically and experimentally in electric double-layer transistors (EDLTs) with various semiconductor channel layers and electrolyte materials. The present article is a review of the recent progress in the EDLTs and the impacts of EDLT technology on modulating the charge transportation of various electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Lilienfeld JE (1933) Device for controlling electric current. US Patent 1900018 A

  2. Kuo Y (2013) Thin film transistor technology–Past present and future. Electrochem Soc Interface 22:55–61

    Google Scholar 

  3. Kahng D (1963) Electric field controlled semiconductor device. US Patent 3102230

  4. Chaudhry A (2013) Fundamentals of nanoscaled field effect transistors. Springer, New York

    Book  Google Scholar 

  5. Kraitchm J (1967) Silicon oxide films grown in a microwave discharge. J Appl Phys 38:4323

    Article  Google Scholar 

  6. Ueno K, Shimotani H, Yuan H, Ye J, Kawasaki M, Iwasa Y (2014) Field-induced superconductivity in electric double layer transistors. J Phys Soc Jpn 83:032001

    Article  Google Scholar 

  7. Panzer MJ, Frisbie CD (2007) Polymer electrolyte-gated organic field-effect transistors: low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density. J Am Chem Soc 129:6599–6607

    Article  Google Scholar 

  8. Robertson J, Wallace RM (2015) High-K materials and metal gates for CMOS applications. Mater Sci Eng R 88:1–41

    Article  Google Scholar 

  9. Hulea I, Fratini S, Xie H, Mulder CL, Iossad NN, Rastelli G, Ciuchi S, Morpurgo AF (2006) Tunable Fröhlich polarons in organic single-crystal transistors. Nat Mater 5:982–986

    Article  Google Scholar 

  10. Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements, Biomed Eng IEEE T BME-17:70-71

  11. Weisheit M, Fähler S, Marty A, Souche Y, Poinsignon C, Givord D (2007) Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315:349–351

    Article  Google Scholar 

  12. Ono S, Seki S, Hirahara R, Tominari Y, Takeya J (2008) High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids. Appl Phys Lett 92:103313

    Article  Google Scholar 

  13. Ahn C, Bhattacharya A, Di Ventra M et al (2006) Electrostatic modification of novel materials. Rev Mod Phys 78:1185

    Article  Google Scholar 

  14. Panda S (2009) Microelectronics and optoelectronics technology. Laxmi Publications, New Delhi

    Google Scholar 

  15. Brennan KF (1999) The physics of semiconductors: with applications to optoelectronic devices. Cambridge University Press, Cambridge

    Book  Google Scholar 

  16. Ferain I, Colinge CA, Colinge J-P (2011) Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479:310–316

    Article  Google Scholar 

  17. Fortunato E, Barquinha P, Martins R (2012) Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater 24:2945–2986

    Article  Google Scholar 

  18. Yuan H, Wang H, Cui Y (2015) Two-dimensional layered chalcogenides: from rational synthesis to property control via orbital occupation and electron filling. Acc Chem Res 48:81–90

    Article  Google Scholar 

  19. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  Google Scholar 

  20. Mitra S, Shukla A, Sampath S (2001) Electrochemical capacitors with plasticized gel-polymer electrolytes. J Power Sources 101:213–218

    Article  Google Scholar 

  21. Nakayama H, Ye J, Ohtani T et al (2012) Electroresistance effect in gold thin film induced by ionic-liquid-gated electric double layer. Appl Phys Express 5:023002

    Article  Google Scholar 

  22. Yuan H, Shimotani H, Tsukazaki A et al (2010) Hydrogenation-induced surface polarity recognition and proton memory behavior at protic-ionic-liquid/oxide electric-double-layer interfaces. J Am Chem Soc 132:6672–6678

    Article  Google Scholar 

  23. Thiemann S, Sachnov S, Porscha S, Wasserscheid P, Zaumseil J (2012) Ionic liquids for electrolyte-gating of ZnO field-effect transistors. J Phys Chem C 116:13536–13544

    Article  Google Scholar 

  24. Shimotani H, Asanuma H, Tsukazaki A, Ohtomo A, Kawasaki M, Iwasa Y (2007) Insulator-to-metal transition in ZnO by electric double layer gating. Appl Phys Lett 91:082106

    Article  Google Scholar 

  25. Nasr B, Wang D, Kruk R, Rösner H, Hahn H, Dasgupta S (2013) High-Speed, low-voltage, and environmentally stable operation of electrochemically gated zinc oxide nanowire field-effect transistors. Adv Funct Mater 23:1750–1758

    Article  Google Scholar 

  26. Misra R, McCarthy M, Hebard AF (2007) Electric field gating with ionic liquids. Appl Phys Lett 90:052905

    Article  Google Scholar 

  27. Shimotani H, Suzuki H, Ueno K, Kawasaki M, Iwasa Y (2008) p-type field-effect transistor of NiO with electric double-layer gating. Appl Phys Lett 92:242107

    Article  Google Scholar 

  28. Huang X, Zeng Z, Zhang H (2013) Metal dichalcogenide nanosheets: preparation, properties and applications. Chem Soc Rev 42:1934–1946

    Article  Google Scholar 

  29. Zhang Y, Ye J, Matsuhashi Y, Iwasa Y (2012) Ambipolar MoS2 thin flake transistors. Nano Lett 12:1136–1140

    Article  Google Scholar 

  30. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150

    Article  Google Scholar 

  31. Perera MM, Lin MW, Chuang HJ et al (2013) Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7:4449–4458

    Article  Google Scholar 

  32. Pu J, Yomogida Y, Liu KK, Li LJ, Iwasa Y, Takenobu T (2012) Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett 12:4013–4017

    Article  Google Scholar 

  33. Zhang Y, Ye J, Yomogida Y, Takenobu T, Iwasa Y (2013) Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor. Nano Lett 13:3023–3028

    Article  Google Scholar 

  34. Arora S, Patel D, Agarwal M (1994) Electrical and optical behaviour of vapour-grown SnS2 crystals. J Mater Sci 29:3979–3983. doi:10.1007/BF00355957

    Article  Google Scholar 

  35. Yuan H, Toh M, Morimoto K, Tan W, Wei F, Shimotani H, Kloc Ch, Iwasa Y (2011) Liquid-gated electric-double-layer transistor on layered metal dichalcogenide, SnS2. Appl Phys Lett 98:012102

    Article  Google Scholar 

  36. Yuan H, Bahramy MS, Morimoto K et al (2013) Zeeman-type spin splitting controlled by an electric field. Nat Phys 9:563–569

    Article  Google Scholar 

  37. Yuan H, Wang X, Lian B et al (2014) Generation and electric control of spin–valley-coupled circular photogalvanic current in WSe2. Nat Nanotechnol 9:851–857

    Article  Google Scholar 

  38. Allard S, Forster M, Souharce B, Thiem H, Scherf U (2008) Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew Chem Int Ed 47:4070–4098

    Article  Google Scholar 

  39. Lee JW, Ju BK, Jang J, Yoon YS, Kim JK (2007) High mobility organic transistor patterned by the shadow-mask with all structure on a plastic substrate. J Mater Sci 42:1026–1030. doi:10.1007/s10853-007-1573-2

    Article  Google Scholar 

  40. Xie W, Frisbie CD (2011) Organic electrical double layer transistors based on rubrene single crystals: examining transport at high surface charge densities above 1013 cm−2. J Phys Chem C 115:14360–14368

    Article  Google Scholar 

  41. Shimotani H, Asanuma H, Iwasa Y (2007) Electric double layer transistor of organic semiconductor crystals in a four-probe configuration. Jpn J Appl Phys 46:3613–3617

    Article  Google Scholar 

  42. Panzer MJ, Newman CR, Frisbie CD (2005) Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric. Appl Phys Lett 86:103503

    Article  Google Scholar 

  43. Kergoat L, Piro B, Berggren M, Horowitz G, Pham MC (2012) Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors. Anal Bioanal Chem 402:1813–1826

    Article  Google Scholar 

  44. Kim SH, Hong K, Xie W et al (2013) Electrolyte-gated transistors for organic and printed electronics. Adv Mater 25:1822–1846

    Article  Google Scholar 

  45. Said E, Larsson O, Berggren M, Crispin X (2008) Effects of the ionic currents in electrolyte-gated organic field-effect transistors. Adv Funct Mater 18:3529–3536

    Article  Google Scholar 

  46. Bernards DA, Malliaras GG (2007) Steady-state and transient behavior of organic electrochemical transistors. Adv Funct Mater 17:3538–3544

    Article  Google Scholar 

  47. Laiho A, Herlogsson L, Forchheimer R, Crispin X, Berggren M (2011) Controlling the dimensionality of charge transport in organic thin-film transistors. Proc Natl Acad Sci 108:15069–15073

    Article  Google Scholar 

  48. Park YD, Kang B, Lim HS, Cho K, Kang MS, Cho JH (2013) Polyelectrolyte interlayer for ultra-sensitive organic transistor humidity sensors. ACS Appl Mater Interface 5:8591–8596

    Article  Google Scholar 

  49. Said E, Crispin X, Herlogsson L, Elhag S, Robinson ND, Berggren M (2006) Polymer field-effect transistor gated via a poly(styrenesulfonic acid) thin film. Appl Phys Lett 89:143507

    Article  Google Scholar 

  50. Fujimoto T, Matsushita MM, Awaga K (2013) Ambipolar carrier injections governed by electrochemical potentials of ionic liquids in electric-double-layer thin-film transistors of lead-and titanyl-phthalocyanine. J Phys Chem C 117:5552–5557

    Article  Google Scholar 

  51. Rosenblatt S, Yaish Y, Park J, Gore J, Sazonova V, McEuen PL (2002) High performance electrolyte gated carbon nanotube transistors. Nano Lett 2:869–872

    Article  Google Scholar 

  52. Lu C, Fu Q, Huang S, Liu J (2004) Polymer electrolyte-gated carbon nanotube field-effect transistor. Nano Lett 4:623–627

    Article  Google Scholar 

  53. Shimotani H, Kanbara T, Iwasa Y, Tsukagoshi K, Aoyagi Y, Kataura H (2006) Gate capacitance in electrochemical transistor of single-walled carbon nanotube. Appl Phys Lett 88:073104

    Article  Google Scholar 

  54. Okimoto H, Takenobu T, Yanagi K et al (2010) Tunable carbon nanotube thin-film transistors produced exclusively via inkjet printing. Adv Mater 22:3981–3986

    Article  Google Scholar 

  55. Ozel T, Gaur A, Rogers JA, Shim M (2005) Polymer electrolyte gating of carbon nanotube network transistors. Nano Lett 5:905–911

    Article  Google Scholar 

  56. Ha M J, Xia Y, Green AA et al (2010) Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 4:4388–4395

    Article  Google Scholar 

  57. Bolotin KI, Sikes K, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  Google Scholar 

  58. Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    Article  Google Scholar 

  59. Kim BJ, Jang H, Lee SK, Hong BH, Ahn JH, Cho JH (2010) High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett 10:3464–3466

    Article  Google Scholar 

  60. Ang PK, Chen W, Wee ATS, Loh KP (2008) Solution-gated epitaxial graphene as pH sensor. J Am Chem Soc 130:14392–14393

    Article  Google Scholar 

  61. Ohno Y, Maehashi K, Yamashiro Y, Matsumoto K (2009) Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett 9:3318–3322

    Article  Google Scholar 

  62. Tsuchiya T, Terabe K, Aono M (2014) In situ and non-volatile bandgap tuning of multilayer graphene oxide in an all-solid-state electric double-layer transistor. Adv Mater 26:1087–1091

    Article  Google Scholar 

  63. Tsuchiya T, Terabe K, Aono M (2014) Micro X-ray photoemission and Raman spectroscopic studies on bandgap tuning of graphene oxide achieved by solid state ionics device. Appl Phys Lett 105:183101

    Article  Google Scholar 

  64. Dhoot AS, Wimbush SC, Benseman T, Macmanus-Driscoll JL, Cooper JR, Friend RH (2010) Increased T c in electrolyte-gated cuprates. Adv Mater 22:2529–2533

    Article  Google Scholar 

  65. Tada H, Nojima T, Nakamura S, Shimotani H, Iwasa Y, Kobayashi N (2009) Preparation of n-type YBa2Cu3Oy films by an electrochemical reaction method J Phys 150:052255

    Google Scholar 

  66. Ueno K, Nakamura S, Shimotani H et al (2008) Electric-field-induced superconductivity in an insulator. Nat Mater 7:855–858

    Article  Google Scholar 

  67. Asanuma S, Xiang PH, Yamada H et al (2010) Tuning of the metal-insulator transition in electrolyte-gated NdNiO3 thin films. Appl Phys Lett 97:142110

    Article  Google Scholar 

  68. Ueno K, Nakamura S, Shimotani H et al (2011) Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nat Nanotechnol 6:408–412

    Article  Google Scholar 

  69. Imada M, Fujimori A, Tokura Y (1998) Metal-insulator transitions. Rev Mod Phys 70:1039

    Article  Google Scholar 

  70. Xiang PH, Asanuma S, Yamada H et al (2011) Strain-mediated phase control and electrolyte-gating of electron-doped manganites. Adv Mater 23:5822–5827

    Article  Google Scholar 

  71. Imada M (1994) Mott transition and transition to incompressible states–variety and universality. J Phys Soc Jpn 63:3059–3077

    Article  Google Scholar 

  72. Scherwitzl R, Zubko P, Lezama IG et al (2010) Electric-field control of the metal-insulator transition in ultrathin NdNiO3 films. Adv Mater 22:5517–5520

    Article  Google Scholar 

  73. Lee M, Williams J, Zhang S, Frisbie CD, Goldhaber-Gordon D (2011) Electrolyte gate-controlled Kondo effect in SrTiO3. Phys Rev Lett 107:256601

    Article  Google Scholar 

  74. Nath R, Raychaudhuri A (2014) Electric double layer gate controlled non-linear transport in a nanostructured functional perovskite oxide film. Appl Phys Lett 104:083515

    Article  Google Scholar 

  75. Ito M, Matsubara Y, Kozuka Y et al (2014) Electric double layer transistors with ferroelectric BaTiO3 channels. Appl Phys Lett 104:222101

    Article  Google Scholar 

  76. Shimizu S, Takahashi KS, Kubota M, Kawasaki M, Tokura Y, Iwasa Y (2014) Gate tuning of anomalous Hall effect in ferromagnetic metal SrRuO3. Appl Phys Lett 105:163509

    Article  Google Scholar 

  77. Fujimoto T, Awaga K (2013) Electric-double-layer field-effect transistors with ionic liquids. Phys Chem Chem Phys 15:8983–9006

    Article  Google Scholar 

  78. Panzer MJ, Frisbie CD (2005) Polymer electrolyte gate dielectric reveals finite windows of high conductivity in organic thin film transistors at high charge carrier densities. J Am Chem Soc 127:6960–6961

    Article  Google Scholar 

  79. Panzer MJ, Frisbie CD (2006) High carrier density and metallic conductivity in poly(3-hexylthiophene) achieved by electrostatic charge injection. Adv Funct Mater 16:1051–1056

    Article  Google Scholar 

  80. Dhoot AS, Yuen JD, Heeney M, McCulloch I, Moses D, Heeger AJ (2006) Beyond the metal-insulator transition in polymer electrolyte gated polymer field-effect transistors. P Natl Acad Sci 103:11834–11837

    Article  Google Scholar 

  81. Takeya J, Yamada K, Hara K et al (2006) High-density electrostatic carrier doping in organic single-crystal transistors with polymer gel electrolyte. Appl Phys Lett 88:112102

    Article  Google Scholar 

  82. Herlogsson L, Crispin X, Robinson ND et al (2007) Low-voltage polymer field-effect transistors gated via a proton conductor. Adv Mater 19:97–101

    Article  Google Scholar 

  83. Herlogsson L, Noh YY, Zhao N, Crispin X, Sirringhaus H, Berggren M (2008) Downscaling of organic field-effect transistors with a polyelectrolyte gate insulator. Adv Mater 20:4708–4713

    Article  Google Scholar 

  84. Panzer MJ, Frisbie CD (2008) Exploiting ionic coupling in electronic devices: electrolyte-gated organic field-effect transistors. Adv Mater 20:3177–3180

    Article  Google Scholar 

  85. Lan L, Xu R, Peng J, Sun M, Zhu X, Cao Y (2009) Dipole-induced organic field-effect transistor gated by conjugated polyelectrolyte. Jpn J Appl Phys 48:080206

    Article  Google Scholar 

  86. Liu J, Herlogsson L, Sawatdee A et al (2010) Vertical polyelectrolyte-gated organic field-effect transistors. Appl Phys Lett 97:103303

    Article  Google Scholar 

  87. Dankerl M, Tosun M, Stutzmann M, Garrido J (2012) Solid polyelectrolyte-gated surface conductive diamond field effect transistors. Appl Phys Lett 100:023510

    Article  Google Scholar 

  88. Lin M-W, Liu L, Lan Q et al (2012) Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte. J Phys D Appl Phys 45:345102

    Article  Google Scholar 

  89. Mondal S, Ghimire RR, Raychaudhuri A (2013) Enhancing photoresponse by synergy of gate and illumination in electric double layer field effect transistors fabricated on n-ZnO. Appl Phys Lett 103:231105

    Article  Google Scholar 

  90. Nath R, Raychaudhuri A (2014) Electric double layer gate controlled non-linear transport in a nanostructured functional perovskite oxide film. Appl Phys Lett 104:083515

    Article  Google Scholar 

  91. Fabiano S, Crispin X, Berggren M (2014) Ferroelectric polarization induces electric double layer bistability in electrolyte-gated field-effect transistors. ACS Appl Mater Interface 6:438–442

    Article  Google Scholar 

  92. Wang YY, Burke PJ (2014) Polyelectrolyte multilayer electrostatic gating of graphene field-effect transistors. Nano Res 7:1650–1658

    Article  Google Scholar 

  93. Dobrynin AV, Rubinstein M (2005) Theory of polyelectrolytes in solutions and at surfaces. Proc Natl Acad Sci 30:1049–1118

    Google Scholar 

  94. Fabiano S, Braun S, Fahlman M, Crispin X, Berggren M (2014) Effect of gate electrode work-function on source charge injection in electrolyte-gated organic field-effect transistors. Adv Funct Mater 24:695–700

    Article  Google Scholar 

  95. Chen Y, Shih I (2009) Scaling down of organic thin film transistors: short channel effects and channel length-dependent field effect mobility. J Mater Sci 44:280–284. doi:10.1007/s10853-008-3047-6

    Article  Google Scholar 

  96. Unni KN, Dabos-Seignon S, Nunzi JM (2006) Influence of the polymer dielectric characteristics on the performance of a quaterthiophene organic field-effect transistor. J Mater Sci 41:317–322. doi:10.1007/s10853-005-2331-y

    Article  Google Scholar 

  97. Herlogsson L, Cölle M, Tierney S, Crispin X, Berggren M (2010) Low-voltage ring oscillators based on polyelectrolyte-gated polymer thin-film transistors. Adv Mater 22:72–76

    Article  Google Scholar 

  98. Herlogsson L, Crispin X, Tierney S, Berggren M (2011) Polyelectrolyte-gated organic complementary circuits operating at low power and voltage. Adv Mater 23:4684–4689

    Article  Google Scholar 

  99. Yuan HT, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M, Iwasa Y (2009) High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv Funct Mater 19:1046–1053

    Article  Google Scholar 

  100. Uemura T, Hirahara R, Tominari Y, Ono S, Seki S, Takeya J (2008) Electronic functionalization of solid-to-liquid interfaces between organic semiconductors and ionic liquids: realization of very high performance organic single-crystal transistors. Appl Phys Lett 93:263305

    Article  Google Scholar 

  101. Hamedi M, Herlogsson L, Crispin X, Marcilla R, Berggren M, Inganäs O (2009) Fiber-embedded electrolyte-gated field-effect transistors for e-textiles. Adv Mater 21:573–577

    Article  Google Scholar 

  102. Chen F, Qing Q, Xia J, Li J, Tao N (2009) Electrochemical gate-controlled charge transport in graphene in ionic liquid and aqueous solution. J Am Chem Soc 131:9908–9909

    Article  Google Scholar 

  103. Ye J, Inoue S, Kobayashi K et al (2010) Liquid-gated interface superconductivity on an atomically flat film. Nat Mater 9:125–128

    Article  Google Scholar 

  104. Okimoto H, Takenobu T, Yanagi K et al (2010) Low-voltage operation of ink-jet-printed single-walled carbon nanotube thin film transistors. Jpn J Appl Phys 49:02BD09

    Article  Google Scholar 

  105. Yuan HT, Toh M, Morimoto K et al (2011) Liquid-gated electric-double-layer transistor on layered metal dichalcogenide, SnS2. Appl Phys Lett 98:012102

    Article  Google Scholar 

  106. Ye JT, Zhang YJ, Matsuhashi Y et al (2012) Gate-induced superconductivity in layered-material-based electric double layer transistors. J Phys 400:022139

    Google Scholar 

  107. Zhou Y, Ramanathan S (2012) Relaxation dynamics of ionic liquid—VO2 interfaces and influence in electric double-layer transistors. J Appl Phys 111:084508

    Article  Google Scholar 

  108. Chen Z, Yuan H, Wang X et al (2013) Ionic liquid gated electric-double-layer transistors based on Mg-doped InN epitaxial films. Appl Phys Lett 103:253508

    Article  Google Scholar 

  109. Katase T, Hiramatsu H, Kamiya T, Hosono H (2014) Electric double-layer transistor using layered iron selenide Mott insulator TlFe1.6Se2. Proc Natl Acad Sci 111:3979–3983

    Article  Google Scholar 

  110. Ameri SK, Singh PK, Sonkusale SR (2014) Liquid gated three dimensional graphene network transistor. Carbon 79:572–577

    Article  Google Scholar 

  111. Bubel S, Menyo MS, Mates TE, Waite JH, Chabinyc ML (2015) Schmitt trigger using a self-healing ionic liquid gated transistor. Adv Mater. doi:10.1002/adma.201500556

    Google Scholar 

  112. Ono S, Miwa K, Seki S, Takeya J (2009) A comparative study of organic single-crystal transistors gated with various ionic-liquid electrolytes. Appl Phys Lett 94:063301

    Article  Google Scholar 

  113. Fujimoto T, Matsushita MM, Awaga K (2012) Ionic-liquid component dependence of carrier injection and mobility for electric-double-layer organic thin-film transistors. J Phys Chem C 116:5240–5245

    Article  Google Scholar 

  114. Veres J, Ogier SD, Leeming SW, Cupertino DC, Mohialdin Khaffaf S (2003) Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv Funct Mater 13:199–204

    Article  Google Scholar 

  115. Stassen A, De Boer R, Iosad N, Morpurgo A (2004) Influence of the gate dielectric on the mobility of rubrene single-crystal field-effect transistors. Appl Phys Lett 85:3899–3901

    Article  Google Scholar 

  116. Cho JH, Lee J, Xia Y et al (2008) Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat Mater 7:900–906

    Article  Google Scholar 

  117. Braga D, Gutiérrez Lezama I, Berger H, Morpurgo AF (2012) Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett 12:5218–5223

    Article  Google Scholar 

  118. Yuan H, Liu H, Shimotani H et al (2011) Liquid-gated ambipolar transport in ultrathin films of a topological insulator Bi2Te3. Nano Lett 11:2601–2605

    Article  Google Scholar 

  119. Lee J, Panzer MJ, He Y, Lodge TP, Frisbie CD (2007) Ion gel gated polymer thin-film transistors. J Am Chem Soc 129:4532–4533

    Article  Google Scholar 

  120. Eguchi R, Senda M, Uesugi E et al (2013) Electric-double-layer transistors with thin crystals of FeSe1−x Te x (x = 0.9 and 1.0). Appl Phys Lett 102:103506

    Article  Google Scholar 

  121. Yomogida Y, Pu J, Shimotani H et al (2012) Ambipolar organic single-crystal transistors based on ion gels. Adv Mater 24:4392–4397

    Article  Google Scholar 

  122. Lee SK, Kim BJ, Jang H et al (2011) Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett 11:4642–4646

    Article  Google Scholar 

  123. Lee KH, Kang MS, Zhang S, Gu Y, Lodge TP, Frisbie CD (2012) “Cut and stick” rubbery ion gels as high capacitance gate dielectrics. Adv Mater 24:4457–4462

    Article  Google Scholar 

  124. Xia Y, Zhang W, Ha M et al (2010) Printed sub-2 V gel-electrolyte-gated polymer transistors and circuits. Adv Funct Mater 20:587–594

    Article  Google Scholar 

  125. Kergoat L, Herlogsson L, Braga D et al (2010) A water-gate organic field-effect transistor. Adv Mater 22:2565–2569

    Article  Google Scholar 

  126. Mulla MY, Tuccori E, Magliulo M et al (2015) Capacitance-modulated transistor detects odorant binding protein chiral interactions. Nat Commun 6:6010

    Article  Google Scholar 

  127. Deml AM, Bunge AL, Reznikov MA, Kolessov A, O’Hayre RP (2012) Progress toward a solid-state ionic field effect transistor. J Appl Phys 111:074511

    Article  Google Scholar 

  128. Chiragwandi Z, Nur O, Willander M, Calander N (2003) Dc characteristics of a nanoscale water-based transistor. Appl Phys Lett 83:5310–5312

    Article  Google Scholar 

  129. Zhong C, Deng Y, Roudsari AF, Kapetanovic A, Anantram M, Rolandi M (2011) A polysaccharide bioprotonic field-effect transistor. Nat Commun 2:476

    Article  Google Scholar 

  130. Sun J, Wan Q, Lu A, Jiang J (2009) Low-voltage electric-double-layer paper transistors gated by microporous SiO2 processed at room temperature. Appl Phys Lett 95:222108

    Article  Google Scholar 

  131. Jiang J, Wan Q, Sun J, Lu A (2009) Ultralow-voltage transparent electric-double-layer thin-film transistors processed at room-temperature. Appl Phys Lett 95:152114

    Article  Google Scholar 

  132. Lu A, Sun J, Jiang J, Wan Q (2009) Microporous SiO2 with huge electric-double-layer capacitance for low-voltage indium tin oxide thin-film transistors. Appl Phys Lett 95:222905

    Article  Google Scholar 

  133. Dou W, Sun J, Jiang J, Lu A, Wan Q (2010) Low-voltage oxide homojunction electric-double-layer transistors gated by ion-incorporated inorganic solid electrolytes. Jpn J Appl Phys 49:110201

    Article  Google Scholar 

  134. Jiang J, Sun J, Zhou B, Lu A, Wan Q (2010) Vertical low-voltage oxide transistors gated by microporous SiO2/LiCl composite solid electrolyte with enhanced electric-double-layer capacitance. Appl Phys Lett 97:052104

    Article  Google Scholar 

  135. Liu H, Sun J, Tang Q, Wan Q (2010) Ultralow-voltage electric double-layer SnO2 nanowire transistors gated by microporous SiO2-based solid electrolyte. J Phys Chem C 114:12316–12319

    Article  Google Scholar 

  136. Jiang J, Dai M, Sun J, Zhou B, Lu A, Wan Q (2011) Electrostatic modification of oxide semiconductors by electric double layers of microporous SiO2-based solid electrolyte. J Appl Phys 109:054501

    Article  Google Scholar 

  137. Zhang H, Guo L, Wan Q (2013) Nanogranular Al2O3 proton conducting films for low-voltage oxide-based homojunction thin-film transistors. J Mater Chem C 1:2781–2786

    Article  Google Scholar 

  138. Zhu L, Sun J, Wu G, Zhang H, Wan Q (2013) Self-assembled dual in-plane gate thin-film transistors gated by nanogranular SiO2 proton conductors for logic applications. Nanoscale 5:1980–1985

    Article  Google Scholar 

  139. Wu G, Zhang H, Zhou J, Huang A, Wan Q (2013) Proton conducting zeolite films for low-voltage oxide-based electric-double-layer thin-film transistors and logic gates. J Mater Chem C 1:5669–5674

    Article  Google Scholar 

  140. Wu G, Wan X, Yang Y, Jiang S (2014) Lateral-coupling coplanar-gate oxide-based thin-film transistors on bare paper substrates. J Phys D Appl Phys 47:495101

    Article  Google Scholar 

  141. Liu YH, Zhu LQ, Shi Y, Wan Q (2014) Proton conducting sodium alginate electrolyte laterally coupled low-voltage oxide-based transistors. Appl Phys Lett 104:133504

    Article  Google Scholar 

  142. Fan R, Huh S, Yan R, Arnold J, Yang P (2008) Gated proton transport in aligned mesoporous silica films. Nat Mater 7:303–307

    Article  Google Scholar 

  143. Shen H, Maekawa H, Kawamura J, Yamamura T (2006) Development of high protonic conductors based on amorphous mesoporous alumina. Solid State Ionics 177:2403–2406

    Article  Google Scholar 

  144. Sierka M, Sauer J (2001) Proton mobility in chabazite, faujasite, and ZSM-5 zeolite catalysts. comparison based on ab initio calculations. J Phys Chem B 105:1603–1613

    Article  Google Scholar 

  145. Scherrer B, Schlupp MV, Stender D et al (2013) On proton conductivity in porous and dense yttria stabilized zirconia at low temperature. Adv Funct Mater 23:1957–1964

    Article  Google Scholar 

  146. Avila-Paredes HJ, Barrera-Calva E, Anderson HU et al (2010) Room-temperature protonic conduction in nanocrystalline films of yttria-stabilized zirconia. J Mater Chem 20:6235–6238

    Article  Google Scholar 

  147. Hirai T, Teramoto K, Nagashima K et al (1996) Crystal and electrical characterizations of oriented yttria-stabilized zirconia buffer layer for the metal/ferroelectric/insulator/semiconductor field-effect transistor. Jpn J Appl Phys 35:4016

    Article  Google Scholar 

  148. Nogami M, Nagao R, Wong C, Kasuga T, Hayakawa T (1999) High proton conductivity in porous P2O5-SiO2 glasses. J Phys Chem B 103:9468–9472

    Article  Google Scholar 

  149. Skinner SJ, Kilner JA (2003) Oxygen ion conductors. Mater Today 6:30–37

    Article  Google Scholar 

  150. Jeong J, Aetukuri N, Graf T, Schladt TD, Samant MG, Parkin SS (2013) Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 339:1402–1405

    Article  Google Scholar 

  151. Tsuchiya T, Terabe K, Aono M (2013) All-solid-state electric-double-layer transistor based on oxide ion migration in Gd-doped CeO2 on SrTiO3 single crystal. Appl Phys Lett 103:073110

    Article  Google Scholar 

  152. Onishi T (2009) The effects of counter cation on lithium ion conductivity: in the case of the perovskite-type titanium oxides of La2/3−x Li3x TiO3 and LaTiO3. Solid State Ionics 180:592–597

    Article  Google Scholar 

  153. Inaguma Y, Liquan C, Itoh M et al (1993) High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86:689–693

    Article  Google Scholar 

  154. Zhang Q, Schmidt N, Lan J, Kim W, Cao G (2014) A facile method for the synthesis of the Li0.3La0.57TiO3 solid state electrolyte. Chem Commun 50:5593–5596

    Article  Google Scholar 

  155. Inaguma Y, Yu J, Shan YJ, Itoh M, Nakamuraa T (1995) The effect of the hydrostatic pressure on the ionic conductivity in a perovskite lanthanum lithium titanate. J Electrochem Soc 142:L8–L11

    Article  Google Scholar 

  156. Yashima M, Itoh M, Inaguma Y, Morii Y (2005) Crystal structure and diffusion path in the fast lithium-ion conductor La0.62Li0.16TiO3. J Am Chem Soc 127:3491–3495

    Article  Google Scholar 

  157. Katsumata T, Inaguma Y, Itoh M, Kawamura K (2002) Influence of covalent character on high Li ion conductivity in a perovskite-type Li ion conductor: prediction from a molecular dynamics simulation of La0.6Li0.2TiO3. Chem Mater 14:3930–3936

    Article  Google Scholar 

  158. Qian D, Xu B, Cho H-M, Hatsukade T, Carroll KJ, Meng YS (2012) Lithium lanthanum titanium oxides: a fast ionic conductive coating for lithium-ion battery cathodes. Chem Mater 24:2744–2751

    Article  Google Scholar 

  159. Li L, Yu Y, Ye GJ et al (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377

    Article  Google Scholar 

  160. Kang SJ, Kocabas C, Ozel T et al (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol 2:230–236

    Article  Google Scholar 

  161. Szafranek BN, Schall D, Otto M, Neumaier D, Kurz H (2011) High on/off ratios in bilayer graphene field effect transistors realized by surface dopants. Nano Lett 11:2640–2643

    Article  Google Scholar 

  162. Das A, Pisana S, Chakraborty B et al (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 3:210–215

    Article  Google Scholar 

  163. Lee HS, Min SW, Chang YG et al (2012) MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett 12:3695–3700

    Article  Google Scholar 

  164. Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H (2003) Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300:1269–1272

    Article  Google Scholar 

  165. Seo SJ, Choi CG, Hwang YH, Bae BS (2009) High performance solution-processed amorphous zinc tin oxide thin film transistor. J Phys D Appl Phys 42:035106

    Article  Google Scholar 

  166. Ju S, Lee K, Yoon M-H, Facchetti A, Marks TJ, Janes DB (2007) High performance ZnO nanowire field effect transistors with organic gate nanodielectrics: effects of metal contacts and ozone treatment. Nanotechnol 18:155201

    Article  Google Scholar 

  167. Park K-B, Seon J-B, Kim GH et al (2010) High electrical performance of wet-processed indium zinc oxide thin-film transistors. IEEE Electron Dev Lett 31:311–313

    Article  Google Scholar 

  168. Zou X, Fang G, Yuan L, Li M, Guan W, Zhao X (2010) Top-gate low-threshold voltage thin-film transistor grown on substrate using a high-HfON gate dielectric. IEEE Electron Dev Lett 31:827–829

    Article  Google Scholar 

  169. Kim Y-H, Kim K-H, Oh MS et al (2010) Ink-jet-printed zinc–tin–oxide thin-film transistors and circuits with rapid thermal annealing process. IEEE Electron Dev Lett 31:836–838

    Article  Google Scholar 

  170. Fortunato E, Martins R (2011) Where science fiction meets reality? With oxide semiconductors! Phys Status Solidi R 5:336–339

    Article  Google Scholar 

  171. Lembke D, Bertolazzi S, Kis A (2015) Single-layer MoS2 electronics. Acc Chem Res 48:100–110

    Article  Google Scholar 

  172. Zhang S, Yan Z, Li Y, Chen Z, Zeng H (2015) Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap Transitions. Angew Chem Int Ed 127:3155–3158

    Article  Google Scholar 

  173. Xu X, Gabor NM, Alden JS, van der Zande AM, McEuen PL (2009) Photo-thermoelectric effect at a graphene interface junction. Nano Lett 10:562–566

    Article  Google Scholar 

  174. Ohta H, Sato Y, Kato T et al (2010) Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal. Nat Commun 1:118

    Article  Google Scholar 

  175. Grosse KL, Bae M-H, Lian F, Pop E, King WP (2011) Nanoscale Joule heating Peltier cooling and current crowding at graphene-metal contacts. Nat Nanotechnol 6:287–290

    Article  Google Scholar 

  176. Bubnova O, Berggren M, Crispin X (2012) Tuning the thermoelectric properties of conducting polymers in an electrochemical transistor. J Am Chem Soc 134:16456–16459

    Article  Google Scholar 

  177. Ohta H (2013) Electric-field thermopower modulation in SrTiO3-based field-effect transistors. J Mater Sci 48:2797–2805. doi:10.1007/s10853-012-6856-6

    Article  Google Scholar 

  178. Buscema M, Barkelid M, Zwiller V, van der Zant HS, Steele GA, Castellanos-Gomez A (2013) Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett 13:358–363

    Article  Google Scholar 

  179. Takayanagi R, Fujii T, Asamitsu A (2014) Control of thermoelectric properties of ZnO using electric double-layer transistor structure. Jpn J Appl Phys 53:111101

    Article  Google Scholar 

  180. Yanagi K, Kanda S, Oshima Y et al (2014) Tuning of the thermoelectric properties of one-dimensional material networks by electric double layer techniques using ionic liquids. Nano Lett 14:6437–6442

    Article  Google Scholar 

  181. Ohtaki M, Koga H, Tokunaga T, Eguchi K, Arai H (1995) Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi). J Solid State Chem 120:105–111

    Article  Google Scholar 

  182. Hor Y, Richardella A, Roushan P et al (2009) p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys Rev B 79:195208

    Article  Google Scholar 

  183. Peranio N, Eibl O, Nurnus J (2006) Structural and thermoelectric properties of epitaxially grown Bi2Te3 thin films and superlattices. J Appl Phys 100:114306

    Article  Google Scholar 

  184. Smith RJ, King PJ, Lotya M et al (2011) Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv Mater 23:3944–3948

    Article  Google Scholar 

  185. Steinberg H, Gardner DR, Lee YS, Jarillo-Herrero P (2010) Surface state transport and ambipolar electric field effect in Bi2Se3 nanodevices. Nano Lett 10:5032–5036

    Article  Google Scholar 

  186. Goldman AM, Marković N (2008) Superconductor-insulator transitions in the two-dimensional limit. Phys Today 51:39–44

    Article  Google Scholar 

  187. Parendo KA, Tan KSB, Bhattacharya A, Eblen-Zayas M, Staley N, Goldman A (2005) Electrostatic tuning of the superconductor-insulator transition in two dimensions. Phys Rev Lett 94:197004

    Article  Google Scholar 

  188. Bollinger AT, Dubuis G, Yoon J, Pavuna D, Misewich J, Božović I (2011) Superconductor-insulator transition in La2−x Sr x CuO4 at the pair quantum resistance. Nature 472:458–460

    Article  Google Scholar 

  189. Lee Y, Frydman A, Chen T, Skinner B, Goldman A (2013) Electrostatic tuning of the properties of disordered indium-oxide films near the superconductor-insulator transition. Phys Rev B 88:024509

    Article  Google Scholar 

  190. Chiba D, Fukami S, Shimamura K, Ishiwata N, Kobayashi K, Ono T (2011) Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nat Mater 10:853–856

    Article  Google Scholar 

  191. Yamada Y, Ueno K, Fukumura T et al (2011) Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332:1065–1067

    Article  Google Scholar 

  192. Shi J, Ha SD, Zhou Y, Schoofs F, Ramanathan S (2013) A correlated nickelate synaptic transistor. Nat Commun 4:2676

    Google Scholar 

  193. Zhu LQ, Wan CJ, Guo LQ, Shi Y, Wan Q (2014) Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat Commun 5:3158

    Google Scholar 

  194. Heller I, Chatoor S, Männik J et al (2010) Influence of electrolyte composition on liquid-gated carbon nanotube and graphene transistors. J Am Chem Soc 132:17149–17156

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Australian Research Council Project (Grant No. FT140100032). One of the authors (H. Du) appreciates the China Scholarship Council (CSC) for financial support (No. 201406410060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dewei Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, H., Lin, X., Xu, Z. et al. Electric double-layer transistors: a review of recent progress. J Mater Sci 50, 5641–5673 (2015). https://doi.org/10.1007/s10853-015-9121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9121-y

Keywords

Navigation