Skip to main content
Log in

COOS: a wave-function based Schrödinger–Poisson solver for ballistic nanotube transistors

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper gives an in depth overview on a wave-function based simulation framework (called coos) for modeling ballistic nanotube transistors by solving the effective-mass Schrödinger equation. The framework considers non-parabolic electronic band structure effects, band-to-band tunneling as well as a heterojunction-like model for extended contacts to describe the injection and reception of charge carriers into and from the channel. Special emphasis is put on an efficient and reliable numerical implementation. The applicability of the simulation framework and the necessity to include the aforementioned phenomena are shown by comparing simulation results with experimental data of a \(50\hbox { nm}\) long carbon nanotube transistor (cntfet). The intrinsic transit frequencies and the output characteristics for higher drain-source voltages are predicted and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. For a given injection energy the same wave number \(k(E)\) follows from Eq. (1) employing plane waves and an energy-dependent effective mass according to (3) if \(q V_\mathrm{c,v} = \pm E_\mathrm{g}/2\) in the absence of external electrical fields, thus, referencing all energies to mid gap (i. e. the charge neutrality level).

  2. Band-to-band tunnelling can be especially easily described in \(k\)-space. The injected charge carrier penetrates the forbidden gap along the imaginary wave number axis, making a “smooth” transition from the valence to the conduction band at the branch wave number \(k_\mathrm{br}\), where \(E-qV_\mathrm{c} = qV_\mathrm{v} - E\) [35].

  3. For all simulations, a relative error bound of \(10^{-3}\) is used.

  4. The Fermi velocity also represents the group velocity of a wave package centered at an arbitrary wave number in graphene since the dispersion relation is linear.

References

  1. Schroter, M., Claus, M., Sakalas, P., Wang, D., Haferlach, M.: An overview on the state-of-the-art of carbon-based radio-frequency electronics. In: IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCMT), pp. 112–119 (2012)

  2. Tenne, R.: Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nano. 1(2), 103–111 (2006)

    Article  Google Scholar 

  3. Remskar, M., Mrzel, A., Virsek, M., Godec, M., Krause, M., Kolitsch, A., Singh, A., Seabaugh, A.: The mos2 nanotubes with defect-controlled electric properties. Nanoscale Res. Lett. 6(1), 1–6 (2010)

    Google Scholar 

  4. Kim, F.S., Ren, G., Jenekhe, S.A.: One-dimensional nanostructures of \(\pi \)-conjugated molecular systems: assembly, properties, and applications from photovoltaics, sensors, and nanophotonics to nanoelectronics. Chem. Mater. 23(3), 682–732 (2011)

    Article  Google Scholar 

  5. Seidel, R.V., Graham, A.P., Kretz, J., Rajasekharan, B., Duesberg, G.S., Liebau, M., Unger, E., Kreupl, F., Hoenlein, W.: Sub-20 nm short channel carbon nanotube transistors. Nano Lett. 5(1), 147–150 (2005)

    Article  Google Scholar 

  6. Franklin, A.D., Chen, Z.: Length scaling of carbon nanotube transistors. Nat. Nano. 5(12), 858–862 (Dec. 2010)

  7. Franklin, A.D., Luisier, M., Han, S.-J., Tulevski, G., Breslin, C.M., Gignac, L., Lundstrom, M.S., Haensch, W.: Sub-10 nm carbon nanotube transistor. Nano Lett. 12(2), 758–762 (2012)

    Article  Google Scholar 

  8. Lemay, S.G., Janssen, J.W., van den Hout, M., Mooij, M., Bronikowski, M.J., Willis, P.A., Smalley, R.E., Kouwenhoven, L.P., Dekker, C.: Two-dimensional imaging of electronic wavefunctions in carbon nanotubes. Nature 412(6847), 617–620 (2001)

    Article  Google Scholar 

  9. Knoch, J., Appenzeller, J.: Tunneling phenomena in carbon nanotube field-effect transistors. phys Status Solidi (a) 205(4), 679–694 (2008)

    Article  Google Scholar 

  10. Guo, J., Datta, S., Anantram, M., Lundstrom, M.: Atomistic simulation of carbon nanotube field-effect transistors using non-equilibrium green’s function formalism. In: Computational Electronics, 2004. IWCE-10 2004. Abstracts. 10th International Workshop on, pp. 71–72 (2004)

  11. Klimeck, G.: Nemo 1-d: The first negf-based tcad tool and network for computational nanotechnology. Available: https://nanohub.org/resources/178 (2004)

  12. Alam, K., Lake, R.K.: Leakage and performance of zero-Schottky-barrier carbon nanotube transistors. J. Appl. Phys. 98(6), 064307 (2005)

    Article  Google Scholar 

  13. Pourfath, M., Kosina, H., Selberherr, S.: Numerical study of quantum transpost in carbon nanotube transistors, Sci. Direct (2007)

  14. Frensley, W.R.: Numerical evaluation of resonant states. Superlattices Microstruct. 11, 347–350 (1992)

    Article  Google Scholar 

  15. Claus, M., Schröter, M.: Design study of cnt transistor layouts for analog circuits. In: Proceedings of NSTI Workshop on Compact Modeling, Vol. 3, pp. 566–569 (2009)

  16. Claus, M., Gross, D., Haferlach, M., Schröter, M.: Critical review of cntfet compact models. In: NSTI-Nanotech (Workshop on Compact modeling), Vol. 2, pp. 770–775 (2012)

  17. Claus, M., Blawid, S., Schröter, M.: Impact of near-contact barriers on the subthreshold slope of short-channel cntfets. In: International Conference on Simulation of Semiconductor Devices and Processes (SISPAD), pp. 159–162 (2013)

  18. Claus, M., Mothes, S., Schröter, M.: Modeling of NQS effects in carbon nanotube transistors. In: International Conference on Simulation of Semiconductor Devices and Processes (SISPAD), Bologna, Italy, pp. 203–206 (2010)

  19. Claus, M., Blawid, S., Sakalas, P., Schröter, M.: Analysis of the frequency dependent gate capacitance in cntfets. In: International Conference on Simulation of Semiconductor Devices and Processes (SISPAD), pp. 336–339 (2012)

  20. Claus, M., Blawid, S., Mothes, S., Schröter, M.: High-frequency ballistic transport phenomena in schottky-barrier cntfets. IEEE Trans. Electron. Devices 59(10), 2610–2618 (2012)

    Article  Google Scholar 

  21. Castro, L.C., John, D.L., Pulfrey, D.L., Pourfath, M., Gehring, A., Kosina, H.: Method for predicting fT for carbon nanotube FETs. IEEE Trans. Nanotechnol. 4(6), 699–704 (2005)

    Article  Google Scholar 

  22. Pourfath, M., Kosina, H., Selberherr, S.: A fast and stable Poisson–Schrödinger solver for the analysis of carbon nanotube transistors. J. Comput. Electron. 5, 155–159 (2006)

    Article  Google Scholar 

  23. Javey, A., Guo, J., Farmer, D.B., Wang, Q., Yenilmez, E., Gordon, R.G., Lundstrom, M., Dai, H.: Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 4, 1319–1322 (2004)

    Article  Google Scholar 

  24. Yang, M.H., Teo, K.B.K., Milne, W.I.: Carbon nanotube Schottky diode and directionally dependent field-effect transistor using asymmetrical contacts. Appl. Phys. Lett. 87, 253116 (2005)

    Article  Google Scholar 

  25. Chen, Z., Appenzeller, J., Knoch, J., Lin, Y.-M., Avouris, P.: The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 5(7), 1497–1502 (2005)

  26. Cummings, A.W., Leonard, F.: Enhanced performance of short-channel carbon nanotube field-effect transistors due to gate-modulated electrical contacts. ACS Nano 6(5), 4494–4499 (2012)

    Article  Google Scholar 

  27. Schroter, M., Claus, M., Sakalas, P., Haferlach, M., Wang, D.: Carbon Nanotube FET Technology for Radio-Frequency Electronics: State-of-the-Art Overview (invited). IEEE J. Electron Devices Soc. 1(1), 9–20 (2013)

    Article  Google Scholar 

  28. Nemec, N., Tomcanek, D., Cuniberti, G.: Modeling extended contacts for nanotube and graphene devices. Phys. Rev. B 77, 125 420–125 432 (2008)

    Article  Google Scholar 

  29. Claus, M., Fediai, A., Mothes, S., Knoch, J., Ryndyk, D., Blawid, S., Cuniberti, G., Schröter,M.: Towards a multiscale modeling framework for metal-cnt interfaces (accepted). In: International Workshop on Computional Electronics (IWCE), (2014)

  30. Blawid, S., Claus, M., Schröter, M.: Phenomenological modeling of charge injection - beyond the schottky barrier paradigm, in 27th Symposium on Microlelectronics Technology and Devices (SBMicro), ECS Transactions, vol. 49, Brasília pp. 85–92 (2012)

  31. Di Ventra, M.: Electrical Transport in Nanoscale Systems. Cambridge University Press, New York (2008)

    Book  Google Scholar 

  32. Cummings, A.W., Léonard, F.: Electrostatic effects on contacts to carbon nanotube transistors. Appl. Phys. Lett. 98(26), 263503 (2011)

    Article  Google Scholar 

  33. Mintmire, J.W., White, C.T.: Universal density of states for carbon nanotubes. Phys. Rev. Lett. 81(12), 2506–2509 (1998)

    Article  Google Scholar 

  34. Léonard, F.M.C., Tersoff, J.: Role of fermi-level pinning in nanotube schottky diodes. Phys. Rev. Lett. 84(20), 4693–4696 (2000)

    Article  Google Scholar 

  35. Kane, E.: Zener tunneling in semiconductors. J. Phys. Chem. Solids 12(2), 181–188 (1960)

    MathSciNet  Google Scholar 

  36. Lundstrom, M.: Fundamentals of Carrier Transport. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  37. Jüngel, A.: Transport equations for semiconductors, ser. Lecture notes in physics. Springer, Heidelberg (2009)

    Book  Google Scholar 

  38. Claus, M.: Modeling of ballistic carbon nanotube transistors for analog high-frequency applications, Ph.D. Dissertation, Technische Universität Dresden (2011)

  39. Einspruch, N. G., Frensley, W. R. (eds): Heterostructures and Quantum Devices. Academic Press, San Diego (1994)

  40. Fernando, C.L., Frensley, W.R.: An efficient method for the numerical evaluation of resonant states. J. Appl. Phys. 76(5), 2881–2886 (1994)

    Article  Google Scholar 

  41. Arnold, A.: Mathematical concepts of open quantum boundary conditions. Transp. Theory Stat. Phys. 30, 561–584 (2001)

    Article  MATH  Google Scholar 

  42. Arnold, A., Ehrhardt, M.: Discrete transparent boundary conditions for wide angle parabolic equations in underwater acoustics. J. Comput. Phys. 145(2), 611–638 (1998)

  43. Deuflhard, P.: Newton Methods for Nonlinear Problems : Affine Invariance and Adaptive Algorithms. Springer series in computational mathematics. Springer, Heidelberg (2006)

    Google Scholar 

  44. Espelid, T. O.: Doubly adaptive quadrature routines based on newton-cotes rules. In: Reports in Informatics 229, Department of Informatics, Univerity of Bergen, (2002)

  45. Pinaud, O.: Transient simulations of a resonant tunneling diode. J. Appl. Phys. 92(4), 1987–1994 (2002)

    Article  MathSciNet  Google Scholar 

  46. Cheng, C., Lee, J.-H., Lim, K.H., Massoud, H.Z., Liu, Q.H.: 3d quantum transport solver based on the perfectly matched layer and spectral element methods for the simulation of semiconductor nanodevices. J. Comput. Phys. 227(1), 455–471 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  47. Claus, M., Mothes, S., Schröter, M.: A numerical device simulator for nanoscale carbon nanotube transistors. In: Proceedings of the Semiconductor Conference Dresden, vol. A3–3, (2009)

  48. Gander, W., Gautschi, W.: Adaptive quadrature—revisited. BIT Numer. Math. 40(1), 84–101 (2000)

    Article  MathSciNet  Google Scholar 

  49. Reich, S., Thomsen, C., Maultzsch, C.: Carbon Nanotubes: Basic Concepts and Physical Properties. Wiley, Weinheim (2004)

    Google Scholar 

  50. Koswatta, S.O., Neophytou, N., Kienle, D., Fiori, G., Lundstrom, M.S.: Dependence of DC characteristics of CNT MOSFETs on bandstructure models. IEEE Trans. Nanotechnol. 5(4), 368–372 (2006)

    Article  Google Scholar 

  51. Johnson, S. G.: Notes on Perfectly Matched Layers (PMLs), lecture Notes at Massachusetts Institute of Technology (MIT), USA (2008)

  52. Odermatt, S., Luisier, M., Witzigmann, B.: Bandstructure calculation using the k \(\cdot \) p method for arbitrary potentials with open boundary conditions. J. Appl. Phys. 97(4), 046104 (2005)

    Article  Google Scholar 

  53. Karner, M., Gehring, A., Kosina, H., Selberherr, S.: Efficient calculation of quasi-bound state tunneling in CMOS devices, In: Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices SISPAD 2005(01–03), 35–38 (2005)

Download references

Acknowledgments

The authors acknowledge the financial support from the Cfaed, the dfg projects CL384/2 and SCHR695/6 as well as the namitec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Claus.

Appendices

Boundary conditions for the Poisson equation

The boundary condition for the electrostatic potential \(\psi \) along metal contacts reads

$$\begin{aligned} q\psi =\frac{1}{2}E_\mathrm{g,1}-\varPhi _\mathrm{sb}+qV_\mathrm{c} \end{aligned}$$
(19)

where \(V_\mathrm{c}\) is the applied voltage at contact c. Let \(V_\mathrm{g}\) be the gate potential. For the gate metal, an effective model is implemented comprising the work function difference \(qV_\mathrm{wd}=\varPhi _\mathrm{mg}-\varPhi _\mathrm{cnt}\) between the gate metal and the cnt as well as an effective potential \(V_\mathrm{ox}\) due to charges within the gate oxide yielding the boundary condition

$$\begin{aligned} \psi =-V_\mathrm{wd}-V_\mathrm{ox}+V_\mathrm{g} \end{aligned}$$
(20)

which is set along gate contacts. Neumann boundary conditions

$$\begin{aligned} \mathrel {\mathrm {grad}}\psi =0 \end{aligned}$$
(21)

are set at the outer boundaries of the simulation domain.

Absorbing boundary conditions

Resonant states are solutions of the Schrödinger equation if absorbing boundary conditions are imposed. For these states, only the flow out of the channel is considered. While hard-wall or periodic boundary conditions will lead to unacceptable artefacts due to boundary reflections, properly chosen absorbing boundary conditions absorb the waves without reflecting them. This requires an absorbing boundary layer to be placed adjacent to the channel (i. e. the uncoated cnt portion) (see Fig. 14) replacing the heterojunction contact used for the current calculation. Thus, for the pre-detection of the resonance peaks (and in contrast to the qtbm boundary conditions, which are used for calculating the internal device quantities) the simulation domain is artificially extended. When a wave enters the absorbing layer, it is attenuated by the absorption and decays exponentially. This allows to impose closed boundary conditions at the absorbing layer boundaries \((x_{\text{ a }},\,x_{\text{ b }})\) without affecting the simulation results. A perfectly matched layer (pml) is one approach to define an absorbing layer which ensures such a reflection-free transition across the boundary [51]. This method has been applied for band structure calculations [52] and for the calculation of quasi-bound states in cmos devices [53]. A pml can be derived by analytical continuation of the wave equation into the complex plane (complex-valued coordinate stretching) leading to a non-Hermitian Hamiltonian. The real parts of the eigenenergies correspond to the energies (i. e. the positions) of the resonant states while the imaginary parts correspond to their lifetimes (i. e. the widths of the peaks).

Fig. 14
figure 14

Extending the channel (uncoated tube portion) by adding perfectly matched layers (absorption layers). Additionally, the shape of the stretching function \(s(x)\) is shown

Let \(s(x)\) be a properly chosen complex-valued coordinate stretching function. Applying the coordinate stretching, the real-valued coordinate variable \(x\) then changes to the complex-valued coordinate \(\xi \) by

$$\begin{aligned} \xi =\int \limits _{0}^{x}s(\tau )\text{ d }\tau . \end{aligned}$$
(22)

However, since complex-valued coordinates are inconvenient, they are transferred back to real coordinates. In the new real coordinates the differential operator \(\partial /\partial \xi \) reads

$$\begin{aligned} \frac{\partial }{\partial \xi }\rightarrow \frac{1}{s( x)}\frac{\partial }{\partial x}. \end{aligned}$$
(23)

Thus, the SE can be written as

$$\begin{aligned} -\frac{\hbar ^{2}}{2}\frac{1}{s( x)}\frac{\partial }{\partial x}\left( \frac{1}{m^{*}(E,x)}\frac{1}{s( x)}\frac{\partial \phi }{\partial x}\right) +V( x)\phi ( x)=E\phi ( x). \end{aligned}$$
(24)

After discretization one gets

$$\begin{aligned}&-\frac{\hbar ^{2}}{2} \frac{1}{s_i}\frac{2}{\Delta x_i + \Delta x_{i-1}} \left( \frac{1}{s_{i+1/2}} \frac{1}{m^{*}_{i+1/2}} \frac{\phi _{i+1}-\phi _{i}}{\Delta x_i} -\right. \nonumber \\&\qquad \left. \frac{1}{s_{i-1/2}} \frac{1}{m^{*}_{i-1/2}} \frac{\phi _{i}-\phi _{i-1}}{\Delta x_{i-1}} \right) +V_i\phi _i=E\phi _i \; , \end{aligned}$$
(25)

where

$$\begin{aligned} \frac{1}{s_{i+1/2}}=\frac{1}{2}\left( \frac{1}{s_{i+1}}+\frac{1}{s_{i}}\right) \; , \end{aligned}$$
(26)

and

$$\begin{aligned} m^{*}_{i+1/2}=\frac{1}{2} \left( m^{*}_{i+1} + m^{*}_{i}\right) . \end{aligned}$$
(27)

The parameters given by the hetero-junction contact model (see Table 1) are used for the potential \(V\) and the effective mass in the absorption layers.

The problem is to find a stretching function suitable to decay oscillating as well as evanescent solutions. For oscillating solutions such as \(\exp (\hbox {i}kx)\), \(s(x)\) should be imaginary and positive with a high absolute value as one can check by replacing \(x\) by (22). For evanescent solutions such as \(\exp (\kappa x)\), \(s(x)\) should be purely real with a small negative value. An imaginary part of \(\sigma _{x}\) would add oscillations to the evanescent solution. To the author’s experience,

$$\begin{aligned} s(x)=\left\{ \! \begin{array}{ll} 1-(\alpha +\mathrm {i}\beta )\left( (x-x_{1})/(x_{\text{ a }}-x_{1}) \right) ^{2}\!,&{}x<x_{1}\\ 1-(\alpha +\mathrm {i}\beta )\left( (x-x_{n})/(x_{\text{ e }}-x_{n}) \right) ^{2}\!,&{}x>x_{n}\\ 1,&{} x_{1}\le x \le x_{n} \end{array}\right. \end{aligned}$$
(28)

is a good compromise for the calculation of resonant states. The parameters \(\alpha \) and \(\beta \) equal \(1.0\) and \(1.4\), respectively.

By imposing closed boundary conditions at the new boundaries \((x_{\text{ a }},\,x_{\text{ e }})\), the calculation of the resonant states reduces to the solution of a linear complex-valued eigenvalue problem in case of a parabolic band structure approximation. Employing an energy-dependent effective mass demands the evaluation of a non-linear complex-valued eigenvalue problem which is more expensive in terms of numerical effort [14].

However, pml is only reflection-less if the exact wave equation is solved. Discretization only allows for an approximate solution, and the analytical perfection of the pml method is no longer preserved. Reflections, however, can be made arbitrarily small as long as the absorption increases slowly with the distance from the channel. The quadratic stretching function usually turns on the absorption slowly enough with negligible reflections for a pml layer of only half a wavelength or thinner [51].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Claus, M., Mothes, S., Blawid, S. et al. COOS: a wave-function based Schrödinger–Poisson solver for ballistic nanotube transistors. J Comput Electron 13, 689–700 (2014). https://doi.org/10.1007/s10825-014-0588-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0588-6

Keywords

Navigation