Skip to main content
Log in

Boosting the performance of an ultrascaled carbon nanotube junctionless tunnel field-effect transistor using an ungated region: NEGF simulation

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper focuses on the role of the longitudinal spacing between the auxiliary gate and control gate in boosting the performance of an ultrascaled junctionless carbon nanotube tunnel field-effect transistor (JL CNT-TFET). The investigation is based on self-consistent quantum simulations in the nonequilibrium Green’s function formalism in the ballistic limit. It is found that dilation of the ungated longitudinal space between the gates causes a significant improvement in the leakage current, ambipolar behavior, subthreshold swing, on/off-current ratio, power–delay product, and intrinsic delay. In addition, a substantial enhancement in the swing factor and current ratio is also recorded for the JL CNT-TFET with coaxial control gate length below 10 nm. The results indicate that adjusting the spacing between the auxiliary gate and control gate is a simple, efficient, and promising approach to achieve ultrascaled JL CNT-TFETs with very high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Desai, S.B., et al.: MoS2 transistors with 1-nanometer gate lengths. Science 354(6308), 99–102 (2016). https://doi.org/10.1126/science.aah4698

    Article  Google Scholar 

  2. Perucchini, M., et al.: Physical insights into the operation of a 1-nm gate length transistor based on MoS2 with metallic carbon nanotube gate. Appl. Phys. Lett. 113(18), 183507 (2018). https://doi.org/10.1063/1.5054281

    Article  Google Scholar 

  3. Marin, E.G., et al.: First-principles simulations of FETs based on two-dimensional InSe. IEEE Electron Device Lett. 39(4), 626–629 (2018). https://doi.org/10.1109/led.2018.2804388

    Article  Google Scholar 

  4. Marin, E.G., et al.: First principles investigation of tunnel FETs based on nanoribbons from topological two-dimensional materials. Nanoscale 9(48), 19390–19397 (2017). https://doi.org/10.1039/c7nr06015g

    Article  Google Scholar 

  5. Pizzi, G., et al.: Performance of arsenene and antimonene double-gate MOSFETs from first principles. Nat. Commun (2016). https://doi.org/10.1038/ncomms12585

    Article  Google Scholar 

  6. Ionescu, A.M., et al.: Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373), 329–337 (2011). https://doi.org/10.1038/nature10679

    Article  Google Scholar 

  7. Seabaugh, A.C., et al.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010). https://doi.org/10.1109/jproc.2010.2070470

    Article  Google Scholar 

  8. Sarkar, D., et al.: A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526(7571), 91–95 (2015). https://doi.org/10.1038/nature15387

    Article  Google Scholar 

  9. Esseni, D., et al.: A review of selected topics in physics based modeling for tunnel field-effect transistors. Semicond. Sci. Technol. 32(8), 083005 (2017). https://doi.org/10.1088/1361-6641/aa6fca

    Article  Google Scholar 

  10. Strangio, S., et al.: Digital and analog TFET circuits: design and benchmark. Solid-State Electron. 146, 50–65 (2018). https://doi.org/10.1016/j.sse.2018.05.003

    Article  Google Scholar 

  11. Lee, C.-W., et al.: Junctionless multigate field-effect transistor. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3079411

    Article  Google Scholar 

  12. Colinge, J.-P., et al.: Nanowire transistors without junctions. Nat. Nanotech. 5(3), 225 (2010). https://doi.org/10.1038/nnano.2010.15

    Article  Google Scholar 

  13. Lee, C.-W., et al.: Performance estimation of junctionless multigate transistors. Solid-State Electron. 54(2), 97–103 (2010). https://doi.org/10.1016/j.sse.2009.12.003

    Article  Google Scholar 

  14. Gnani, E., et al.: Theory of the Junctionless Nanowire FET. IEEE Trans. Electron Devices 58(9), 2903–2910 (2011). https://doi.org/10.1109/ted.2011.2159608

    Article  Google Scholar 

  15. Colinge, J.P., et al.: Junctionless nanowire transistor (JNT): properties and design guidelines. Solid-State Electron. 65–66, 33–37 (2011). https://doi.org/10.1016/j.sse.2011.06.004

    Article  Google Scholar 

  16. Ghosh, B., et al.: Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 34(5), 584–586 (2013). https://doi.org/10.1109/led.2013.2253752

    Article  Google Scholar 

  17. Tahaei, S.H., et al.: A computational study of a carbon nanotube junctionless tunneling field-effect transistor (CNT-JLTFET) based on the charge plasma concept. Superlattices Microstruct. 125, 168–176 (2019). https://doi.org/10.1016/j.spmi.2018.11.004

    Article  Google Scholar 

  18. Raad, B.R., et al.: A new design approach of dopingless tunnel FET for enhancement of device characteristics. IEEE Trans. Electron Devices 64(4), 1830–1836 (2017). https://doi.org/10.1109/ted.2017.2672640

    Article  Google Scholar 

  19. Asthana, P.K., et al.: High-speed and low-power ultradeep-submicrometer III–V heterojunctionless tunnel field-effect transistor. IEEE Trans. Electron Devices 61(2), 479–480 (2014). https://doi.org/10.1109/ted.2013.2295238

    Article  Google Scholar 

  20. Raad, B.R., et al.: Drain work function engineered doping-less charge plasma TFET for ambipolar suppression and RF performance improvement: a proposal, design, and investigation. IEEE Trans. Electron Devices 63(10), 3950–3957 (2016). https://doi.org/10.1109/ted.2016.2600621

    Article  Google Scholar 

  21. Avouris, P., et al.: Carbon-based electronics. Nat. Nanotechnol. 2(10), 605–615 (2007). https://doi.org/10.1038/nnano.2007.300

    Article  Google Scholar 

  22. Cress, C.D., et al.: Nanoscale transistors—just around the gate? Science 341(6142), 140–141 (2013). https://doi.org/10.1126/science.1240452

    Article  Google Scholar 

  23. Guo, J., et al.: Toward multiscale modeling of carbon nanotube transistors. Int. J. Multiscale Comput. Eng. 2(2), 257–276 (2004). https://doi.org/10.1615/intjmultcompeng.v2.i2.60

    Article  Google Scholar 

  24. Koswatta, S.O., et al.: Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors. Appl. Phys. Lett. 87(25), 253107-1–253107-3 (2005). https://doi.org/10.1063/1.2146065

    Article  Google Scholar 

  25. Koswatta, S.O., et al.: Computational study of carbon nanotube p–i–n tunnel FETs. IEDM Tech. Dig. (2005). https://doi.org/10.1109/iedm.2005.1609396

    Article  Google Scholar 

  26. Koswatta, S.O., et al.: Nonequilibrium Green’s function treatment of phonon scattering in carbon-nanotube transistors. IEEE Trans. Electron Devices 54(9), 2339–2351 (2007). https://doi.org/10.1109/ted.2007.902900

    Article  Google Scholar 

  27. Anantram, M.P., et al.: Modeling of nanoscale devices. Proc. IEEE 96(9), 1511–1550 (2008). https://doi.org/10.1109/jproc.2008.927355

    Article  Google Scholar 

  28. Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28(4), 253–278 (2000). https://doi.org/10.1006/spmi.2000.0920

    Article  Google Scholar 

  29. Zhao, P., et al.: Computational study of tunneling transistor based on graphene nanoribbon. Nano Lett. 9(2), 684–688 (2009). https://doi.org/10.1021/nl803176x

    Article  Google Scholar 

  30. Tamersit, K., et al.: Double-gate graphene nanoribbon field-effect transistor for DNA and gas sensing applications: simulation study and sensitivity analysis. IEEE Sens. J. 16(11), 4180–4191 (2016). https://doi.org/10.1109/jsen.2016.2550492

    Article  Google Scholar 

  31. Tamersit, K., et al.: A computationally efficient hybrid approach based on artificial neural networks and the wavelet transform for quantum simulations of graphene nanoribbon FETs. J. Comput. Electron. (2019). https://doi.org/10.1007/s10825-019-01350-2

    Article  Google Scholar 

  32. Tamersit, K., et al.: A novel graphene field-effect transistor for radiation sensing application with improved sensitivity: proposal and analysis. Nucl. Instrum. Methods Phys. Res. Sect. A 901, 32–39 (2018). https://doi.org/10.1016/j.nima.2018.05.075

    Article  Google Scholar 

  33. Tamersit, K., et al.: Carbon nanotube field-effect transistor with vacuum gate dielectric for label-free detection of DNA molecules: a computational investigation. IEEE Sens. J. (2019). https://doi.org/10.1109/jsen.2019.2925597

    Article  Google Scholar 

  34. Tamersit, K.: Quantum simulation of a junctionless carbon nanotube field-effect transistor with binary metal alloy gate electrode. Superlattices Microstruct. 128, 252–259 (2019). https://doi.org/10.1016/j.spmi.2019.02.001

    Article  Google Scholar 

  35. Tamersit, K.: Performance assessment of a new radiation dosimeter based on carbon nanotube field-effect transistor: a quantum simulation study. IEEE Sens. J. 19(9), 3314–3321 (2019). https://doi.org/10.1109/jsen.2019.2894440

    Article  Google Scholar 

  36. Yousefi, R., et al.: Numerical study of lightly doped drain and source carbon nanotube field effect transistors. IEEE Trans. Electron Devices 57(4), 765–771 (2010). https://doi.org/10.1109/ted.2010.2041282

    Article  Google Scholar 

  37. Pourian, P., et al.: Effect of uniaxial strain on electrical properties of CNT-based junctionless field-effect transistor: numerical study. Superlattices Microstruct. 93, 92–100 (2016). https://doi.org/10.1016/j.spmi.2016.03.014

    Article  Google Scholar 

  38. Franklin, A.D., et al.: Toward surround gates on vertical single-walled carbon nanotube devices. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 27(2), 821 (2009). https://doi.org/10.1116/1.3054266

    Article  Google Scholar 

  39. Franklin, A.D., et al.: Carbon nanotube complementary wrap-gate transistors. Nano Lett. 13(6), 2490–2495 (2013). https://doi.org/10.1021/nl400544q

    Article  Google Scholar 

  40. Fiori, G., et al.: Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768–779 (2014). https://doi.org/10.1038/nnano.2014.207

    Article  Google Scholar 

  41. Tamersit, K.: An ultra-sensitive gas nanosensor based on asymmetric dual-gate graphene nanoribbon field-effect transistor: proposal and investigation. J. Comput. Electron. (2019). https://doi.org/10.1007/s10825-019-01349-9

    Article  Google Scholar 

  42. Tamersit, K.: Computational study of short-channel effects in double-gate junctionless graphene nanoribbon field-effect transistors. J. Comput. Electron. (2019). https://doi.org/10.1007/s10825-019-01375-7

    Article  Google Scholar 

  43. Divya Bharathi, N., et al.: Performance analysis of a substrate-engineered monolayer MoS2 field-effect transistor. J. Comput. Electron. 18(1), 146–154 (2018). https://doi.org/10.1007/s10825-018-1282-x

    Article  Google Scholar 

  44. Tamersit, K., et al.: Boosting the performance of a nanoscale graphene nanoribbon field-effect transistor using graded gate engineering. J. Comput. Electron. 17(3), 1276–1284 (2018). https://doi.org/10.1007/s10825-018-1209-6

    Article  Google Scholar 

  45. Kotti, M., et al.: On the dynamic rounding-off in analogue and RF optimal circuit sizing. Int. J. Electron. 101(4), 452–468 (2013). https://doi.org/10.1080/00207217.2013.784945

    Article  Google Scholar 

  46. Bendib, T., et al.: Electrical performance optimization of nanoscale double-gate MOSFETs using multiobjective genetic algorithms. IEEE Trans. Electron Devices 58(11), 3743–3750 (2011). https://doi.org/10.1109/ted.2011.2163820

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Tamersit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamersit, K. Boosting the performance of an ultrascaled carbon nanotube junctionless tunnel field-effect transistor using an ungated region: NEGF simulation. J Comput Electron 18, 1222–1228 (2019). https://doi.org/10.1007/s10825-019-01385-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01385-5

Keywords

Navigation