Skip to main content
Log in

Empirical tight binding parameters for GaAs and MgO with explicit basis through DFT mapping

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The Empirical Tight Binding (ETB) method is widely used in atomistic device simulations. The reliability of such simulations depends very strongly on the choice of basis sets and the ETB parameters. The traditional way of obtaining the ETB parameters is by fitting to experiment data, or critical theoretical bandedges and symmetries rather than a foundational mapping. A further shortcoming of traditional ETB is the lack of an explicit basis. In this work, a DFT mapping process which constructs TB parameters and explicit basis from DFT calculations is developed. The method is applied to two materials: GaAs and MgO. Compared with the existing TB parameters, the GaAs parameters by DFT mapping show better agreement with the DFT results in bulk band structure calculations and lead to different indirect valleys when applied to nanowire calculations. The MgO TB parameters and TB basis functions are also obtained through the DFT mapping process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://en.wikipedia.org/wiki/Low-rank_approximation.

References

  1. Krukau, A., Vydrov, O., Izmaylov, A., Scuseria, G.: J. Chem. Phys. 124, 224106 (2006)

    Article  Google Scholar 

  2. Hybertsen, M.S., Louie, S.G.: Phys. Rev. B 34, 5390 (1986)

    Article  Google Scholar 

  3. Ismail-Beigi, S., Louie, S.G.: Phys. Rev. Lett. 90, 076401 (2003)

    Article  Google Scholar 

  4. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D.: Rev. Mod. Phys. 64, 1045 (1992)

    Article  Google Scholar 

  5. Lake, R., Klimeck, G., Datta, S.: Phys. Rev. B 47, 6427 (1993)

    Article  Google Scholar 

  6. Klimeck, G., Oyafuso, F., Boykin, T.B., Bowen, C.R., Allmen, P.V.: Comput. Model. Eng. Sci. 3, 601 (2002)

    MATH  Google Scholar 

  7. Boykin, T.B., Klimeck, G., Eriksson, M., Friesen, M., Coppersmith, S., Allmen, P., Oyafuso, F., Lee, S.: Appl. Phys. Lett. 84, 115 (2004)

    Article  Google Scholar 

  8. Jancu, J.-M., Scholz, R., Beltram, F., Bassani, F.: Phys. Rev. B 57, 6493 (1998)

    Article  Google Scholar 

  9. Boykin, T.B., Klimeck, G., Bowen, R.C., Oyafuso, F.: Phys. Rev. B 66, 125207 (2002)

    Article  Google Scholar 

  10. Marzari, N., Vanderbilt, D.: Phys. Rev. B 56, 12847 (1997)

    Article  Google Scholar 

  11. Qian, X., Li, J., Qi, L., Wang, C.-Z., Chan, T.-L., Yao, Y.-X., Ho, K.-M., Yip, S.: Phys. Rev. B 78, 245112 (2008)

    Article  Google Scholar 

  12. Lu, W.C., Wang, C.Z., Chan, T.L., Ruedenberg, K., Ho, K.M.: Phys. Rev. B 70, 041101 (2004)

    Article  Google Scholar 

  13. Urban, A., Reese, M., Mrovec, M., Elsässer, C., Meyer, B.: Phys. Rev. B 84, 155119 (2011)

    Article  Google Scholar 

  14. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., Ando, K.: Nat. Mater. 3, 868 (2004)

    Article  Google Scholar 

  15. Kim, Y.S., Hummer, K., Kresse, G.: Phys. Rev. B 80, 035203 (2009)

    Article  Google Scholar 

  16. Cerdá, J., Soria, F.: Phys. Rev. B 61, 7965 (2000)

    Article  Google Scholar 

  17. Slater, J.C., Koster, G.F.: Phys. Rev. 94, 1498 (1954)

    Article  MATH  Google Scholar 

  18. Vogl, A.V.P.P.: Phys. Rev. B 69, 233101 (2004)

    Article  Google Scholar 

  19. Rodwell, M., Frensley, M., Steiger, S., Chagarov, E., Lee, S., Ryu, H., Tan, Y., Wang, L., Law, J., Boykin, T., et al.: In: Device Research Conference (DRC), p. 149 (2010)

    Chapter  Google Scholar 

Download references

Acknowledgements

nanoHUB.org computational resources operated by the Network for Computational Nanotechnology funded by NSF are utilized in this work. The research was funded by the Lockheed Martin Corporation and NSF (Award No. 1125017)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaohua Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, Y., Povolotskyi, M., Kubis, T. et al. Empirical tight binding parameters for GaAs and MgO with explicit basis through DFT mapping. J Comput Electron 12, 56–60 (2013). https://doi.org/10.1007/s10825-013-0436-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-013-0436-0

Keywords

Navigation