Skip to main content

Advertisement

Log in

Impact of temperature on the biosynthesis of cytotoxically active carbamidocyclophanes A–E in Nostoc sp. CAVN10

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

An Erratum to this article was published on 12 February 2016

Abstract

The effects of different temperatures on biomass production and carbamidocyclophane biosynthesis of the cyanobacterium Nostoc sp. CAVN10 were investigated under batch cultivation conditions over 30 days. Cyanobacterial growth correlated with increasing temperatures from 18 to 33 °C but revealed different specific growth rates within the cultivation period. The accumulation of carbamidocyclophanes A–E was investigated at different growth stages, and their levels were quantified by HPLC-UV analysis. The highest dry weight content of 1.5 % for carbamidocyclophane A, 1.0 % for carbamidocyclophane B, and 1.1 % for carbamidocyclophane C was found around the 15th day at 28 °C. At 33 °C, however, yields of these compounds decreased significantly, but the content of carbamidocyclophanes D and E continuously increased to 0.4 % on the 25th day. In general, carbamidocyclophanes showed cytotoxic activity against LN18 glioblastoma cells and 5637 human urinary bladder carcinoma cells with half maximal inhibitory concentration (IC50) values of 2.1–3.1 μM and 0.8–2.1 μM. Only carbamidocyclophane D exhibited a less potent cytotoxicity against 5637 cells with an IC50 value of 10.1 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-awar RS, Shih C (2012) The isolation, characterization, and development of a novel class of potent antimitotic macrocyclic depsipeptides: the cryptophycins. In: Cragg GM, Kingston DGI, Newman DJ (eds) Anticancer agents from natural products. CRC Press, Boca Raton, pp 219–240

    Google Scholar 

  • Anagnostidis K, Komárek J (1988) Modern approach to the classification system of cyanophytes. 3 - Oscillatoriales. Arch Hydrobiol Suppl 80 Algolog Stud 50–53:327–472

    Google Scholar 

  • Andersen RA (ed) (2005) Algal culturing techniques. Elsevier, Amsterdam

    Google Scholar 

  • Anderson LK, Rayner MC, Sweet RM, Eiserling FA (1983) Regulation of Nostoc sp. phycobilisome structure by light and temperature. J Bacteriol 155:1407–1416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bäcker C, Jenett-Siems K, Siems K, Wurster M, Bodtke A, Lindequist U (2014) Cytotoxic saponins from the seeds of Pittosporum angustifolium. Z Naturforsch C 69:191–198

    Article  PubMed  Google Scholar 

  • Bácsi I, Vasas G, Surányi G, M-Hamvas M, Máthé C, Tóth E, Grigorszky I, Gáspár A, Tóth S, Borbely G (2006) Alteration of cylindrospermopsin production in sulfate- or phosphate-starved cyanobacterium Aphanizomenon ovalisporum. FEMS Microbiol Lett 259:303–310

    Article  PubMed  Google Scholar 

  • Bar-Yosef Y, Sukenik A, Hadas O, Viner-Mozzini Y, Kaplan A (2010) Enslavement in the water body by toxic Aphanizomenon ovalisporum, inducing alkaline phosphatase in phytoplanktons. Curr Biol 20:1557–1561

    Article  CAS  PubMed  Google Scholar 

  • Berges JA, Varela DE, Harrison PJ (2002) Effects of temperature on growth rate, cell composition and nitrogen metabolism in the marine diatom Thalassiosira pseudonana (Bacillariophyceae). Mar Ecol Prog Ser 225:139–146

    Article  Google Scholar 

  • Blackburn SI, McCausland MA, Bolch CJS, Newman SJ, Jones GJ (1996) Effect of salinity on growth and toxin production in cultures of the bloom-forming cyanobacterium Nodularia spumigena from Australian waters. Phycologia 35:511–522

    Article  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2013) Marine natural products. Nat Prod Rep 30:237–323

    Article  CAS  PubMed  Google Scholar 

  • Bobzin SC, Moore RE (1993) Biosynthetic origin of [7.7]paracyclophanes from cyanobacteria. Tetrahedron 49:7615–7626

    Article  CAS  Google Scholar 

  • Boopathi T, Ki JS (2014) Impact of environmental factors on the regulation of cyanotoxin production. Toxins 6:1951–1978

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouterfas R, Belkoura M, Dauta A (2002) Light and temperature effects on the growth rate of three freshwater algae isolated from a eutrophic lake. Hydrobiologia 489:207–217

    Article  Google Scholar 

  • Bracht K, Boubakari GR, Bednarski PJ (2006) Correlations between the activities of 19 anti-tumor agents and the intracellular glutathione concentrations in a panel of 14 human cancer cell lines: comparisons with the National Cancer Institute data. Anticancer Drugs 17:41–51

    Article  CAS  PubMed  Google Scholar 

  • Bui HTN, Jansen R, Pham HTL, Mundt S (2007) Carbamidocyclophanes A-E, chlorinated paracyclophanes with cytotoxic and antibiotic activity from the Vietnamese cyanobacterium Nostoc sp. J Nat Prod 70:499–503

    Article  CAS  PubMed  Google Scholar 

  • Burford MA, Davis TW, Orr PT, Sinha R, Willis A, Neilan BA (2014) Nutrient-related changes in the toxicity of field blooms of the cyanobacterium, Cylindrospermopsis raciborskii. FEMS Microbiol Ecol 89:135–148

    Article  CAS  PubMed  Google Scholar 

  • Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC (2001) Marine cyanobacteria—a prolific source of natural products. Tetrahedron 57:9347–9377

    Article  CAS  Google Scholar 

  • Carneiro RL, dos Santos MEV, Pacheco ABF, Azevedo SMFO (2009) Effects of light intensity and light quality on growth and circadian rhythm of saxitoxins production in Cylindrospermopsis raciborskii (Cyanobacteria). J Plankton Res 31:481–488

    Article  CAS  Google Scholar 

  • Castro D, Vera D, Lagos N, García C, Vásquez M (2004) The effect of temperature on growth and production of paralytic shellfish poisoning toxins by the cyanobacterium Cylindrospermopsis raciborskii C10. Toxicon 44:483–489

    Article  CAS  PubMed  Google Scholar 

  • Chen JL, Moore RE, Patterson GML (1991) Structures of nostocyclophanes A-D. J Org Chem 56:4360–4364

    Article  CAS  Google Scholar 

  • Chlipala GE, Sturdy M, Krunic A, Lantvit DD, Shen Q, Porter K, Swanson SM, Orjala J (2010) Cylindrocyclophanes with proteasome inhibitory activity from the cyanobacterium Nostoc sp. J Nat Prod 73:1529–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirés S, Wörmer L, Timón J, Wiedner C, Quesada A (2011) Cylindrospermopsin production and release by the potentially invasive cyanobacterium Aphanizomenon ovalisporum under temperature and light gradients. Harmful Algae 10:668–675

    Article  Google Scholar 

  • Codd GA, Poon GK (1988) Cyanobacterial toxins. In: Gallon JG, Rogers LJ (eds) Biochemistry of the algae and cyanobacteria. Oxford University Press, Oxford, pp 283–296

    Google Scholar 

  • D’Agostino G, Del Campo J, Mellado B, Izquierdo MA, Minarik T, Cirri L, Marini L, Perez-Gracia JL, Scambia G (2006) A multicenter phase II study of the cryptophycin analog LY355703 in patients with platinum-resistant ovarian cancer. Int J Gynecol Cancer 16:71–76

    Article  PubMed  Google Scholar 

  • Davis TW, Orr PT, Boyer GL, Burford MA (2014) Investigating the production and release of cylindrospermopsin and deoxy-cylindrospermopsin by Cylindrospermopsis raciborskii over a natural growth cycle. Harmful Algae 31:18–25

    Article  CAS  Google Scholar 

  • Davison IR (1991) Environmental effects on algal photosynthesis: temperature. J Phycol 27:2–8

    Article  Google Scholar 

  • Dias E, Pereira P, Franca S (2002) Production of paralytic shellfish toxins by Aphanizomenon sp. LMECYA 31 (cyanobacteria). J Phycol 38:705–712

    Article  CAS  Google Scholar 

  • Dixit RB, Suseela MR (2013) Cyanobacteria: potential candidates for drug discovery. Antonie van Leeuwenhoek 103:947–961

    Article  CAS  PubMed  Google Scholar 

  • Dyble J, Tester PA, Litaker RW (2006) Effects of light intensity on cylindrospermopsin production in the cyanobacterial HAB species Cylindrospermopsis raciborskii. Afr J Mar Sci 28:309–312

    Article  Google Scholar 

  • Edelman MJ, Gandara DR, Hausner P, Israel V, Thornton D, DeSanto J, Doyle LA (2003) Phase 2 study of cryptophycin 52 (LY355703) in patients previously treated with platinum based chemotherapy for advanced non-small cell lung cancer. Lung Cancer 39:197–199

    Article  PubMed  Google Scholar 

  • Engene N, Rottacker EC, Kaštovský J, Byrum T, Choi H, Ellisman MH, Komárek J, Gerwick WH (2012) Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int J Syst Evol Microbiol 62:1171–1178

    Article  PubMed  PubMed Central  Google Scholar 

  • Evidente A, Kornienko A, Cimmino A, Andolfi A, Lefranc F, Mathieu V, Kiss R (2014) Fungal metabolites with anticancer activity. Nat Prod Rep 31:617–627

    Article  CAS  PubMed  Google Scholar 

  • Foy RH, Gibson CE (1982) Photosynthetic characteristics of planktonic blue-green algae: the response of twenty strains grown under high and low light. Brit Phycol J 17:169–182

    Article  Google Scholar 

  • Gagnon A, Pick FR (2012) Effect of nitrogen on cellular production and release of the neurotoxin anatoxin-a in a nitrogen-fixing cyanobacterium. Front Microbiol 3:211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerwick WH, Moore BS (2012) Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 19:85–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerwick L, Gerwick WH, Coates RC, Engene N, Grindberg RV, Jones AC, Sorrels CM (2008) Giant marine cyanobacteria produce exciting potential pharmaceuticals. Microbe 3:277–284

    Google Scholar 

  • Gibson CE, Foy RH (1983) The photosynthesis and growth efficiency of a planktonic blue-green alga, Oscillatoria redekei. Brit Phycol J 18:39–45

    Article  Google Scholar 

  • Harrigan GG, Goetz G (2002) Symbiotic and dietary marine microalgae as a source of bioactive molecules-experience from natural products research. J Appl Phycol 14:103–108

    Article  CAS  Google Scholar 

  • Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13:894–901

    Article  CAS  PubMed  Google Scholar 

  • Jähnichen S, Petzoldt T, Benndorf J (2001) Evidence for control of microcystin dynamics in Bautzen Reservoir (Germany) by cyanobacterial population growth rates and dissolved inorganic carbon. Arch Hydrobiol 150:177–196

    Google Scholar 

  • Jähnichen S, Long BM, Petzoldt T (2011) Microcystin production by Microcystis aeruginosa: direct regulation by multiple environmental factors. Harmful Algae 12:95–104

    Article  Google Scholar 

  • Jonasson S, Vintila S, Sivonen K, El-Shehawy R (2008) Expression of the nodularin synthetase genes in the Baltic Sea bloom-former cyanobacterium Nodularia spumigena strain AV1. FEMS Microbiol Ecol 65:31–39

    Article  CAS  PubMed  Google Scholar 

  • Jones AC, Gu L, Sorrels CM, Sherman DH, Gerwick WH (2009) New tricks from ancient algae: natural products biosynthesis in marine cyanobacteria. Curr Opin Chem Biol 13:216–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang H-S, Santarsiero BD, Kim H, Krunic A, Shen Q, Swanson SM, Chai H, Kinghorn AD, Orjala J (2012) Merocyclophanes A and B, antiproliferative cyclophanes from the cultured terrestrial cyanobacterium Nostoc sp. Phytochemistry 79:109–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kearns KD, Hunter MD (2000) Green algal extracellular products regulate antialgal toxin production in a cyanobacterium. Environ Microbiol 2:291–297

    Article  CAS  PubMed  Google Scholar 

  • Komárek J, Anagnostidis K (1989) Modern approach to the classification system of cyanophytes 4 - Nostocales. Arch Hydrobiol Suppl 82/3 Algolog Stud 56:247–345

    Google Scholar 

  • König GM, Kehraus S, Seibert SF, Abdel-Lateff A, Müller D (2006) Natural products from marine organisms and their associated microbes. Chembiochem 7:229–238

    Article  PubMed  Google Scholar 

  • Kuhl A, Lorenzen H (1964) Handling and culturing of Chlorella. In: Prescott DM (ed) Methods in cell physiology. Academic Press, New York, pp 159–187

    Google Scholar 

  • Kurmayer R (2011) The toxic cyanobacterium Nostoc sp. strain 152 produces highest amounts of microcystin and nostophycin under stress conditions. J Phycol 47:200–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehtimäki J, Moisander P, Sivonen K, Kononen K (1997) Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria. Appl Environ Microbiol 63:1647–1656

    PubMed  PubMed Central  Google Scholar 

  • Lincke T, Behnken S, Ishida K, Roth M, Hertweck C (2010) Closthioamide: an unprecedented polythioamide antibiotic from the strictly anaerobic bacterium Clostridium cellulolyticum. Angew Chem Int Ed 49:2011–2013

    Article  CAS  Google Scholar 

  • Liu L, Rein KS (2010) New peptides isolated from Lyngbya species: a review. Mar Drugs 8:1817–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long BM, Jones GJ, Orr PT (2001) Cellular microcystin content in N-limited Microcystis aeruginosa can be predicted from growth rate. Appl Environ Microbiol 67:278–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luesch H, Harrigan GG, Goetz G, Horgen FD (2002) The cyanobacterial origin of potent anticancer agents originally isolated from sea hares. Curr Med Chem 9:1791–1806

    Article  CAS  PubMed  Google Scholar 

  • Luo S, Kang H-S, Krunic A, Chlipala GE, Cai G, Chen W-L, Franzblau SG, Swanson SM, Orjala J (2014) Carbamidocyclophanes F and G with anti-Mycobacterium tuberculosis activity from the cultured freshwater cyanobacterium Nostoc sp. Tetrahedron Lett 55:686–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magarvey NA, Beck ZQ, Golakoti T, Ding Y, Huber U, Hemscheidt TK, Abelson D, Moore RE, Sherman DH (2006) Biosynthetic characterization and chemoenzymatic assembly of the cryptophycins. Potent anticancer agents from Nostoc cyanobionts. ACS Chem Biol 1:766–779

    Article  CAS  PubMed  Google Scholar 

  • Meissner S, Fastner J, Dittmann E (2013) Microcystin production revisited: conjugate formation makes a major contribution. Environ Microbiol 15:1810–1820

    Article  CAS  PubMed  Google Scholar 

  • Mohamed ZA, Al-Shehri AM (2013) Assessment of cylindrospermopsin toxin in an arid Saudi lake containing dense cyanobacterial bloom. Environ Monit Assess 185:2157–2166

    Article  CAS  PubMed  Google Scholar 

  • Monchamp ME, Pick FR, Beisner BE, Maranger R (2014) Nitrogen forms influence microcystin concentration and composition via changes in cyanobacterial community structure. PLoS One 9, e85573

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore BS, Chen JL, Patterson GML, Moore RE, Brinen LS, Kato Y, Clardy J (1990) [7.7]Paracyclophanes from blue-green algae. J Am Chem Soc 112:4061–4063

    Article  CAS  Google Scholar 

  • Moore BS, Chen JL, Patterson GML, Moore RE (1992) Structures of cylindrocyclophanes A-F. Tetrahedron 48:3001–3006

    Article  CAS  Google Scholar 

  • Mundt S, Kreitlow S, Nowotny A, Effmert U (2001) Biochemical and pharmacological investigations of selected cyanobacteria. Int J Hyg Environ Health 203:327–334

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Hamer HA, Sirasani G, Balskus EP (2012) Cylindrocyclophane biosynthesis involves functionalization of an unactivated carbon center. J Am Chem Soc 134:18518–18521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neilan BA, Pearson LA, Muenchhoff J, Moffitt MC, Dittmann E (2013) Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ Microbiol 15:1239–1253

    Article  CAS  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niedermeyer T, Brönstrup M (2012) Natural product drug discovery from microalgae. In: Posten C, Walter C (eds) Microalgal biotechnology: integration and economy. Walter de Gruyter, Berlin, pp 169–202

    Google Scholar 

  • Nunnery JK, Mevers E, Gerwick WH (2010) Biologically active secondary metabolites from marine cyanobacteria. Curr Opin Biotechnol 21:787–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orr PT, Jones GJ (1998) Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol Oceanogr 43:1604–1614

    Article  CAS  Google Scholar 

  • Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65:995–1010

    Article  CAS  PubMed  Google Scholar 

  • Pomati F, Rossetti C, Manarolla G, Burns BP, Neilan BA (2004) Interactions between intracellular Na+ levels and saxitoxin production in Cylindrospermopsis raciborskii T3. Microbiology 150:455–461

    Article  CAS  PubMed  Google Scholar 

  • Post AF, De Wit R, Mur LR (1985) Interactions between temperature and light intensity on growth and photosynthesis of the cyanobacterium Oscillatoria agardhii. J Plankton Res 7:487–495

    Article  Google Scholar 

  • Preisitsch M, Harmrolfs K, Pham HT, Heiden SE, Füssel A, Wiesner C, Pretsch A, Swiatecka-Hagenbruch M, Niedermeyer TH, Müller R, Mundt S (2015) Anti-MRSA-acting carbamidocyclophanes H-L from the Vietnamese cyanobacterium Nostoc sp. CAVN2. J Antibiot 68:165–177

    Article  CAS  PubMed  Google Scholar 

  • Rapala J, Sivonen K (1998) Assessment of environmental conditions that favor hepatotoxic and neurotoxic Anabaena spp. strains cultured under light limitation at different temperatures. Microb Ecol 36:181–192

    Article  CAS  PubMed  Google Scholar 

  • Rapala J, Sivonen K, Luukkainen R, Niemelä SI (1993) Anatoxin-a concentration in Anabaena and Aphanizomenon under different environmental conditions and comparison of growth by toxic and non-toxic Anabaena strains - a laboratory study. J Appl Phycol 5:581–591

    Article  CAS  Google Scholar 

  • Rapala J, Sivonen K, Lyra C, Niemelä SI (1997) Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Appl Environ Microbiol 63:2206–2212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Repka S, Mehtonen J, Vaitomaa J, Saari L, Sivonen K (2001) Effects of nutrients on growth and nodularin production of Nodularia strain GR8b. Microb Ecol 42:606–613

    Article  CAS  PubMed  Google Scholar 

  • Robarts RD, Zohary T (1987) Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom‐forming cyanobacteria. N Z J Mar Freshw Res 21:391–399

    Article  CAS  Google Scholar 

  • Saker ML, Neilan BA (2001) Varied diazotrophies, morphologies, and toxicities of genetically similar isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from northern Australia. Appl Environ Microbiol 67:1839–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz RE, Hirsch CF, Sesin DF, Flor JE, Chartrain M, Fromtling RE, Harris GH, Salvatore MJ, Liesch JM, Yudin K (1990) Pharmaceuticals from cultured algae. J Ind Microbiol 5:113–123

    Article  CAS  Google Scholar 

  • Singh RK, Tiwari SP, Rai AK, Mohapatra TM (2011) Cyanobacteria: an emerging source for drug discovery. J Antibiot 64:401–412

    Article  CAS  PubMed  Google Scholar 

  • Sivonen K (1990) Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Appl Environ Microbiol 56:2658–2666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E & FN Spon, London, pp 41–111

    Google Scholar 

  • Smith CD, Zhang X, Mooberry SL, Patterson GML, Moore RE (1994) Cryptophycin: a new antimicrotubule agent active against drug-resistant cells. Cancer Res 54:3779–3784

    CAS  PubMed  Google Scholar 

  • Smith AB III, Adams CM, Kozmin SA, Paone DV (2001) Total synthesis of (−)-cylindrocyclophanes A and F exploiting the reversible nature of the olefin cross metathesis reaction. J Am Chem Soc 123:5925–5937

    Article  CAS  PubMed  Google Scholar 

  • Tan LT (2010) Filamentous tropical marine cyanobacteria: a rich source of natural products for anticancer drug discovery. J Appl Phycol 22:659–676

    Article  CAS  Google Scholar 

  • Tarman K, Lindequist U, Mundt S (2013) Metabolites of marine microorganisms and their pharmacological activities. In: Kim S-K (ed) Marine microbiology: bioactive compounds and biotechnological applications. Wiley, Weinheim, pp 393–416

    Chapter  Google Scholar 

  • Tidgewell K, Clark BR, Gerwick WH (2010) The natural products chemistry of cyanobacteria. In: Liu H-W, Mander L (eds) Comprehensive natural products II: chemistry and biology. Elsevier, Amsterdam, pp 141–188

    Chapter  Google Scholar 

  • Trimurtulu G, Ohtani I, Patterson GML, Moore RE, Corbett TH, Valeriote FA, Demchik L (1994) Total structures of cryptophycins, potent antitumor depsipeptides from the blue-green alga Nostoc sp. strain GSV 224. J Am Chem Soc 116:4729–4737

    Article  CAS  Google Scholar 

  • Van der Westhuizen AJ, Eloff JN (1985) Effect of temperature and light on the toxicity and growth of the blue-green alga Microcystis aeruginosa (UV-006). Planta 163:55–59

    Article  PubMed  Google Scholar 

  • Wasmund N (1997) Occurrence of cyanobacterial blooms in the Baltic Sea in relation to environmental conditions. Int Rev Ges Hydrobiol 82:169–184

    Article  Google Scholar 

  • Watanabe MF (1996) Production of microcystins. In: Watanabe MF, Harada K-I, Carmichael WW, Fujiki H (eds) Toxic microcystis. CRC Press, Boca Raton, pp 35–56

    Google Scholar 

  • Watanabe MF, Oishi S (1985) Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions. Appl Environ Microbiol 49:1342–1344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waterbury J, Stanier R (1981) Isolation and growth of cyanobacteria from marine and hypersaline environments. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 221–223

    Chapter  Google Scholar 

  • Wood AM, Everroad RC, Wingard LM (2005) Measuring growth rates in microalgal cultures. In: Andersen RA (ed) Algal culturing techniques. Elsevier, Amsterdam, pp 269–286

    Google Scholar 

  • Yamakoshi H, Ikarashi F, Minami M, Shibuya M, Sugahara T, Kanoh N, Ohori H, Shibata H, Iwabuchi Y (2009) Syntheses of naturally occurring cytotoxic [7.7]paracyclophanes, (−)-cylindrocyclophane A and its enantiomer, and implications for biological activity. Org Biomol Chem 7:3772–3781

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Michael Preisitsch was financially supported in part by a grant of Landesgraduiertenförderung MV, Ernst-Moritz-Arndt-University, Greifswald. The authors further thank the BMBF for financial support of Ha Thi Ngoc Bui.

Conflict of interest

The authors declare to have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Preisitsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preisitsch, M., Bui, H.T.N., Bäcker, C. et al. Impact of temperature on the biosynthesis of cytotoxically active carbamidocyclophanes A–E in Nostoc sp. CAVN10. J Appl Phycol 28, 951–963 (2016). https://doi.org/10.1007/s10811-015-0657-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0657-7

Keywords

Navigation